Previous |  Up |  Next

Article

Keywords:
tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures
Summary:
Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-\kr structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.
References:
[1] Anastasiei, M.: Locally conformal Kähler structures on tangent manifold of a space form. Libertas Math., 19, 1999, 71-76, MR 1726175
[2] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. 2002, Progr. Math. Birkhäuser, Boston, MR 1874240 | Zbl 1011.53001
[3] Bogdanovich, S.A., Ermolitski, A.A.: On almost hyperHermitian structures on Riemannian manifolds and tangent bundles. Cent. Eur. J. Math., 2, 5, 2004, 615-623, DOI 10.2478/BF02475969 | MR 2172044
[4] Calabi, E.: Métriques kähleriennes et fibrés holomophes. Ann. Sci. École Norm. Sup., 12, 1979, 269-294, MR 0543218
[5] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math., 96, 1972, 413-443, DOI 10.2307/1970819 | MR 0309010 | Zbl 0246.53049
[6] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math., 210, 1962, 73-88, MR 0141050 | Zbl 0105.16002
[7] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J. Reine Angew. Math., 250, 1971, 124-129, MR 0286028 | Zbl 0222.53044
[8] Li, X.X., Qi, X.R.: A note on some metrics on tangent bundles and unit tangent sphere bundles. J. Math. Res. Exposition, 28, 4, 2008, 829-838, MR 2465193 | Zbl 1199.53056
[9] Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math., 5, 2008, 43-59, DOI 10.1007/s00009-008-0135-4 | MR 2406440 | Zbl 1177.53022
[10] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, DOI 10.1007/BF01761461 | MR 0946027 | Zbl 0658.53045
[11] Nagano, T.: Isometries on complex-product spaces. Tensor, 9, 1959, 47-61, MR 0107877 | Zbl 0092.15003
[12] Oproiu, V.: A Kähler Einstein structure on the tangent bundle of a space form. Int. J. Math. Math. Sci., 25, 2001, 183-195, DOI 10.1155/S0161171201002009 | MR 1812382 | Zbl 0981.53063
[13] Oproiu, V.: Hyper-Kähler structures on the tangent bundle of a Kähler manifold. Balkan J. Geom. Appl., 15, 1, 2010, 104-119, MR 2608513
[14] Oproiu, V., Papaghiuc, N.: General natural Einstein Kähler structures on tangent bundles. Differential Geom. Appl., 27, 2009, 384-392, DOI 10.1016/j.difgeo.2008.10.017 | MR 2521898 | Zbl 1181.53059
[15] Oproiu, V., Poroşniuc, D.D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, MR 2137782 | Zbl 1082.53029
[16] Ornea, L., Piccinni, P.: Locally conformal Kähler structures in quaternionic geometry. Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, DOI 10.1090/S0002-9947-97-01591-2 | MR 1348155 | Zbl 0865.53038
[17] Poroşniuc, D.D.: A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form. Balkan J. Geom. Appl., 9, 2, 2004, 68-81, MR 2205279 | Zbl 1069.53043
[18] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J., 10, 1958, 338-354, DOI 10.2748/tmj/1178244668 | MR 0112152 | Zbl 0086.15003
[19] Tachibana, S., Okumura, M.: On the almost-complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J., 14, 2, 1962, 156-161, DOI 10.2748/tmj/1178244170 | MR 0143166 | Zbl 0114.38003
[20] Tahara, M., Vanhecke, L., Watanabe, Y.: New structures on tangent bundles. Note Mat., 18, 1, 1998, 131-141, MR 1759021 | Zbl 0964.53021
[21] Vaisman, I.: On locally conformal almost Kähler manifolds. Israel J. Math., 24, 1976, 338-351, DOI 10.1007/BF02834764 | MR 0418003
[22] Zayatuev, B.V.: On a class of almost-Hermitian structures on tangent bundles. Math. Notes, 76, 5, 2004, 682-688, DOI 10.1023/B:MATN.0000049667.15551.02 | MR 2129339
Partner of
EuDML logo