[1] Anastasiei, M.:
Locally conformal Kähler structures on tangent manifold of a space form. Libertas Math., 19, 1999, 71-76,
MR 1726175
[2] Blair, D.E.:
Riemannian geometry of contact and symplectic manifolds. 2002, Progr. Math. Birkhäuser, Boston,
MR 1874240 |
Zbl 1011.53001
[3] Bogdanovich, S.A., Ermolitski, A.A.:
On almost hyperHermitian structures on Riemannian manifolds and tangent bundles. Cent. Eur. J. Math., 2, 5, 2004, 615-623,
DOI 10.2478/BF02475969 |
MR 2172044
[4] Calabi, E.:
Métriques kähleriennes et fibrés holomophes. Ann. Sci. École Norm. Sup., 12, 1979, 269-294,
MR 0543218
[6] Dombrowski, P.:
On the geometry of the tangent bundle. J. Reine Angew. Math., 210, 1962, 73-88,
MR 0141050 |
Zbl 0105.16002
[7] Kowalski, O.:
Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J. Reine Angew. Math., 250, 1971, 124-129,
MR 0286028 |
Zbl 0222.53044
[8] Li, X.X., Qi, X.R.:
A note on some metrics on tangent bundles and unit tangent sphere bundles. J. Math. Res. Exposition, 28, 4, 2008, 829-838,
MR 2465193 |
Zbl 1199.53056
[13] Oproiu, V.:
Hyper-Kähler structures on the tangent bundle of a Kähler manifold. Balkan J. Geom. Appl., 15, 1, 2010, 104-119,
MR 2608513
[15] Oproiu, V., Poroşniuc, D.D.:
A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. Debrecen, 66, 3--4, 2005, 457-478,
MR 2137782 |
Zbl 1082.53029
[17] Poroşniuc, D.D.:
A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form. Balkan J. Geom. Appl., 9, 2, 2004, 68-81,
MR 2205279 |
Zbl 1069.53043
[20] Tahara, M., Vanhecke, L., Watanabe, Y.:
New structures on tangent bundles. Note Mat., 18, 1, 1998, 131-141,
MR 1759021 |
Zbl 0964.53021