Previous |  Up |  Next

Article

Keywords:
graph; partial order; fuzzy metric space; contraction; fixed point
Summary:
Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
References:
[1] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64, 1994, 395-399, DOI 10.1016/0165-0114(94)90162-7 | MR 1289545 | Zbl 0843.54014
[2] George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Systems, 90, 1997, 365-368, DOI 10.1016/S0165-0114(96)00207-2 | MR 1477836 | Zbl 0917.54010
[3] Petruşel, A., Rus, I.A.: Fixed point theorems in ordered $L$-spaces. Proc. Amer. Math. Soc., 134, 2006, 411-418, MR2176009 (2006g:47097). DOI 10.1090/S0002-9939-05-07982-7 | MR 2176009 | Zbl 1086.47026
[4] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math., 10, 1960, 313-334, DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0096.33203
[5] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logics, vol. 8. 2000, Kluwer Academic Publishers, Dordrecht, Boston, London, MR 1790096
[6] Bojor, F.: Fixed points of Kannan mappings in metric spaces endowed with a graph. An. Şt. Univ. Ovidius Constanţa, 20, 1, 2012, 31-40, DOI: 10.2478/v10309-012-0003-x. MR 2928407 | Zbl 1274.54116
[7] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika, 11, 1975, 336-344, MR 0410633 | Zbl 0319.54002
[8] Nieto, J.J., Pouso, R.L., Rodríguez-López, R.: Fixed point theorems in ordered abstract spaces. Proc. Amer. Math. Soc., 135, 2007, 2505--2517, MR2302571. DOI 10.1090/S0002-9939-07-08729-1 | MR 2302571 | Zbl 1126.47045
[9] Nieto, J.J., Rodríguez-López, R.: Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22, 2005, 223-239, DOI 10.1007/s11083-005-9018-5 | MR 2212687 | Zbl 1095.47013
[10] Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sinica, English Ser., 2007, 2205-2212, DOI 10.1007/s10114-005-0769-0 | MR 2357454 | Zbl 1140.47045
[11] Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc., 136, 2008, 1359-1373, DOI 10.1090/S0002-9939-07-09110-1 | MR 2367109 | Zbl 1139.47040
[12] Zadeh, L.A.: Fuzzy sets. Information and Control, 89, 1965, 338-353, DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
[13] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27, 1988, 385-389, DOI 10.1016/0165-0114(88)90064-4 | MR 0956385 | Zbl 0664.54032
[14] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and its Applications. Vol. 536. 2001, Kluwer Academic Publishers, Dordrecht, Boston, London, MR 1896451
[15] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125, 2002, 245-252, DOI 10.1016/S0165-0114(00)00088-9 | MR 1880341 | Zbl 0995.54046
[16] Kirk, W.A., Srinavasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory, 4, 2003, 79-89, MR 2031823
Partner of
EuDML logo