[1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Handbook of Linear Algebra (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007, chapter 25.
[2] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P.:
Synchronization and Linearity. John Wiley, Chichester, New York 1992.
MR 1204266 |
Zbl 0824.93003
[6] Brugallé, E.:
Some aspects of tropical geometry. Newsletter Europ. Math. Soc. 83 (2012), 23-28.
MR 2934649 |
Zbl 1285.14069
[8] Butkovič, P.:
Max-plus Linear Systems: Theory and Algorithms. Springer-Verlag, Berlin 2010.
MR 2681232
[10] Cohen, G., Gaubert, S., Quadrat, J. P.:
Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395-422.
MR 2039751 |
Zbl 1042.46004
[11] Cuninghame-Green, R. A.:
Minimax algebra. Lecture Notes in Econom and Math. Systems 166, Springer-Verlag, Berlin 1970.
MR 0580321 |
Zbl 0739.90073
[12] Cuninghame-Green, R. A.:
Minimax algebra and applications. In: Adv. Imag. Electr. Phys. 90 (P. Hawkes, ed.), Academic Press, New York 1995, pp. 1-121.
Zbl 0739.90073
[14] Develin, M., Sturmfels, B.:
Tropical convexity. Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic) (2004), 205-206.
MR 2054977 |
Zbl 1054.52004
[15] Develin, M., Santos, F., Sturmfels, B.:
On the rank of a tropical matrix. In: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ. Press, Cambridge 2005, pp. 213-242.
MR 2178322 |
Zbl 1095.15001
[16] Einsiedler, M., Kapranov, M., Lind, D.:
Non-archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601 (2006), 139-157.
MR 2289207 |
Zbl 1115.14051
[17] Gathmann, A.:
Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein 108 (2006), 1, 3-32.
MR 2219706 |
Zbl 1109.14038
[18] Gaubert, S., Plus, Max: Methods and applications of $(\operatorname{max}, +)$ linear algebra.
[19] Gondran, M., Minoux, M.:
Graphs, Dioids and Semirings. New Models and Algorithms. Springer-Verlag, Berlin 2008.
MR 2389137 |
Zbl 1201.16038
[20] (ed.), J. Gunawardena:
Idempotency. Publications of the Newton Institute, Cambridge Univ. Press, Cambridge 1998.
MR 1608365 |
Zbl 1144.68006
[21] Itenberg, I., Brugallé, E., Tessier, B.: Géométrie tropicale. Editions de l'École Polythecnique, Paris, 2008.
[22] Itenberg, I., Mikhalkin, G., Shustin, E.:
Tropical Algebraic Geometry. Birkhäuser, Basel 2007.
MR 2292729 |
Zbl 1165.14002
[24] Jiménez, A., Puente, M. J. de la:
Six combinatorial classes of maximal convex tropical polyhedra. ArXiv: 1205.4162 (
http://arxiv.org/abs/1205.4162), 2012.
[27] Litvinov, G. L., Maslov, V. P.:
Idempotent mathematics and mathematical physics. Proc. Vienna 2003, American Mathematical Society, Contemp. Math. 377 (2005).
MR 2145152 |
Zbl 1069.00011
[28] Litvinov, G. L., Sergeev, S. N.:
Tropical and idempotent mathematics. Proc. Moscow 2007, American Mathematical Society, Contemp. Math. 495 (2009).
MR 2581510 |
Zbl 1172.00019
[29] Mikhalkin, G.:
Tropical geometry and its applications. In: Proc. International Congress of Mathematicians, ICM Madrid 2006, (M. Sanz-Solé et al., eds.), Invited lectures, v. II, EMS Ph., Zurich 2006, pp. 827-852.
MR 2275625 |
Zbl 1103.14034
[30] Mikhalkin, G.:
Moduli spaces of rational tropical curves. In: Proc. 13th Gökova Geometry-Topology Conference 2006 (S. Akbulut, T. Onder and R. J. Stern, eds.), International Press, Cambridge, MA 2007, pp. 39-51.
MR 2404949 |
Zbl 1203.14027
[31] Mikhalkin, G.:
What is a tropical curve?. Notices AMS 2007, 511-513.
MR 2305295
[32] Puente, M. J. de la:
On tropical Kleene star matrices and alcoved polytopes. Kybernetika 49 (2013), 6, 897-910.
MR 3182647
[33] Richter-Gebert, J., Sturmfels, B., Theobald, T.:
First steps in tropical geometry. In: [27], pp. 289-317.
MR 2149011 |
Zbl 1093.14080
[36] Sturmfels, B.:
Solving systems of polynomial equations. CBMS Regional Conference Series in Math. 97, AMS, Providence 2002.
MR 1925796 |
Zbl 1101.13040
[37] Sturmfels, B., Yu, J.:
Classification of six-point metrics. Electron. J. Combinatorics 11 (2004), 44 pp.
MR 2097310 |
Zbl 1053.52019
[39] Viro, O.:
Dequantization of real algebraic geometry on logarithmic paper. European Congress of Mathematics, Vol. I (Barcelona 2000), Prog. Math. 201, Birkhäuser, Basel, 2001, pp. 135-146.
MR 1905317 |
Zbl 1024.14026
[40] Viro, O.:
On basic concepts of tropical geometry. Proc. Steklov Inst. Math. 273 (2011), 252-282.
MR 2893551 |
Zbl 1237.14074
[41] Wagneur, E.:
Finitely generated moduloïds. The existence and unicity problem for bases. In: Analysis and Optimization of Systems, Antibes, 1988 (J. L. Lions and A. Bensoussan, eds.), LNCIS 111, Springer-Verlag, Berlin 1988, pp. 966-976.
MR 0956331
[43] Zimmermann, K.: Extremální algebra. Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV 46 (1976), Prague 1976, in Czech.