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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 3 , PAGES 4 0 8 – 4 3 5

DISTANCES ON THE TROPICAL LINE
DETERMINED BY TWO POINTS

Maŕıa Jesús de la Puente

Let p′ and q′ be points in Rn. Write p′ ∼ q′ if p′ − q′ is a multiple of (1, . . . , 1). Two
different points p and q in Rn/ ∼ uniquely determine a tropical line L(p, q) passing through
them and stable under small perturbations. This line is a balanced unrooted semi–labeled tree
on n leaves. It is also a metric graph.

If some representatives p′ and q′ of p and q are the first and second columns of some real
normal idempotent order n matrix A, we prove that the tree L(p, q) is described by a matrix F ,
easily obtained from A. We also prove that L(p, q) is caterpillar. We prove that every vertex
in L(p, q) belongs to the tropical linear segment joining p and q. A vertex, denoted pq, closest
(w.r.t tropical distance) to p exists in L(p, q). Same for q. The distances between pairs of
adjacent vertices in L(p, q) and the distances d(p, pq), d(qp, q) and d(p, q) are certain entries of
the matrix |F |. In addition, if p and q are generic, then the tree L(p, q) is trivalent. The entries
of F are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order
2 minors of the first two columns of A.

Keywords: tropical distance, integer length, tropical line, normal matrix, idempotent ma-
trix, caterpillar tree, metric graph

Classification: 15A80, 14T05

1. INTRODUCTION

Tropical algebra, geometry and analysis are novelties in mathematics. As for algebra
(also called extremal algebra, max–algebra, etc.) it is just algebra performed with
unusual operations: max (for addition) and + (for multiplication). As for geometry, it
can be understood as a degeneration (or shadow) of classical algebraic geometry.

Tropical mathematics is an exciting fast growing field of research; see the collective
works [20, 27, 28], some general references for tropical algebra [1, 2, 8, 12, 18], some
general references for tropical geometry [5, 6, 16, 17, 21, 22, 29, 31, 33, 35, 39, 40]
and some pioneer works [11, 19, 41, 42, 43] among others. In [3, 9] tropical curves are
presented as metric graphs.

In classical projective geometry, it is easy to determine the line passing through
two different given points p and q. If [p1, p2, . . . , pn] and [q1, q2, . . . , qn] are projective
coordinates over a field, then the points x = [x1, x2, . . . , xn] in such a line are described
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by the rank condition

rk


p1 q1 x1

p2 q2 x2

...
...

...
pn qn xn

 = 2.

A basic question in tropical mathematics is to establish the properties of the unique
tropical line L(p, q), stable under small perturbations, determined by two given points
p and q (to be precise, L(p, q) is the limit, as ε tends to zero, of the tropical lines going
through perturbed points pvε , qvε . Here, pvε denotes a translation of p by a vector vε

whose length is ε). The aim of this paper is to answer this question in a particular
instance, namely, when coordinates of p and q are columns of some normal idempotent
square real matrix A.

Tropical algebraic varieties can be defined algebraically (by means of ideals) or geo-
metrically (by means of amoebas). Tropical curves can also be defined combinatorially
(by means of balanced weighted graphs). For tropical lines, weights can be disregarded,
since they all are equal to one. This paper is about the combinatorial description of the
line L(p, q). Moreover, we obtain L(p, q) as a metric graph, with additional information.
Indeed, in metric graphs, leaves have infinite length, while edges have finite length. The
point p (which, in general, is not a vertex of L(p, q)) sits on a certain leaf of L(p, q), and
we determine the length from p to the closest inner vertex of L(p, q) (same for q). These
two lengths are extra information for the metric graph L(p, q).

In this paper we never use −∞. Write ⊕ = max and � = +. These are the tropical
operations addition and multiplication in Rn. Let (e1, e2, . . . , en) denote the canonical
basis in Rn. We work in the quotient space Qn−1 := Rn/ ∼; see (3). There is a bijection
between Qn−1 and Rn−1.

Given different p, q ∈ Qn−1, there may exist many tropical lines passing through p
and q, but there is only one such line which is stable under small perturbations; see
[17, 22, 33, 38]. It is denoted L(p, q).

What do we know about tropical lines in Qn−1? The cases n = 2 or 3 are easy.
Set n = 4. In the generic case, a tropical line in Q3 is a balanced polyhedral complex
consisting of four rays r1, r2, r3, r4 and an edge r, so that

L(p, q) = r ∪
4⋃

j=1

rj .

The ray r4 extends infinitely in the direction of e1 + e2 + e3 and positive sense, and the
rays rj do so in the negative ej direction, for j = 1, 2, 3.

For arbitrary n, a generic line L in Qn−1 is a balanced unrooted trivalent semi–labeled
tree T on leaves marked 1, 2, . . . , n. Leaf marked j in T corresponds to ray rj in L. This
tree is semi–labeled because its inner vertices are left unlabeled. This is all well–known;
see [17, 21, 22, 31, 33, 36].

What do we prove about L(p, q)? Let tconv(p, q) denote the tropical segment joining
p and q in Qn−1. We have tconv(p, q) ⊂ L(p, q), following [14]. Suppose that p, q have
representatives in Rn whose coordinates are the first and second columns of some normal
idempotent square real matrix A of order n. In this paper we prove that every vertex



410 M. J. DE LA PUENTE

of L(p, q) belongs to tconv(p, q); see theorem 5.4. This is not true in less restrictive
conditions. Since tconv(p, q) is compact, then there is a vertex in L(p, q) closest to p
(same for q), with respect to tropical distance (see (5) for the definition and properties
of tropical distance). Moreover, the tree L(p, q) is caterpillar. If p and q are generic,
then L(p, q) is trivalent; see also theorem 5.4.

The paper goes as follows. First, we define the difference of an order 2 matrix; see
definition 3.1. We define the matrix of differences F = (fkl) relative to two columns of
A. Then, for n = 4 we prove that the combinatorics of the tree L(p, q) are determined
by the sign of f34; see remark in p. 418. Moreover, the tropical distances d(p, pq),
d(pq, qp), d(q, qp) and d(p, q) are certain entries of the matrix of absolute values |F |.
Here pq (resp. qp) denotes the vertex of L(p, q) closest to p (resp. to q), with respect
to tropical distance. Notice that pq and qp are the only vertices of the line L(p, q),
for n = 4. This is theorem 4.3. Then, theorem 5.4 is an extension of theorem 4.3 to
arbitrary n.

The key to theorem 5.4 is additivity of matrix F , as stated in (12). To prove that
d(p, q) = |f12| is straightforward; see lemma 3.4. The proof of theorem 5.4 is recursive.
It goes as follows. The combinatorics of the tree L(p, q) and the distances between con-
secutive vertices in it are determined in n− 3 steps. For each step, we deal with an old
tree T ′ and a new tree T . The tree T has one more leaf that T ′. More precisely, T is
a tropical modification of T ′ (see [5, 6, 29] for the meaning of modification in tropical
geometry). All the distances in T are kept the same as in T ′ with one exception: a
distance in T ′ breaks up into two, due to the tropical modification that has happened.
We make this breaking precise by defining fractures; see definition 5.2. For the under-
standing of the whole process, example 5.5 is provided in full detail, step by step, with
accompanying Figures 5 to 9.

We work with only two columns of a normal idempotent matrix (NI, for short). These
matrices A = (aij) are defined by extremely simple linear equalities and inequalities;
see (1). These inequalities are crucial for us to carry computations through! Normal
matrices were first studied by Yoeli (under another name) in [42]. Normal idempotent
matrices are related to metrics in [23, 37]. See [32] for applications of NI matrices
to alcoved polytopes, and [26] for applications of normal and NI matrices to tropical
commutativity.

Our results and definitions are gathered in sections 3, 4 and 5. Lemma 4.1 and theo-
rem 4.3 were obtained with A. Jiménez and appeared before in [24]. Strictly speaking,
the contents of section 4 are included in section 5. However, we prefer to keep section 4
as it stands, because it is helpful for the grasping of the rest of the paper.

2. BACKGROUND

For n ∈ N, set [n] := {1, 2, . . . , n}. Let Rn×m denote the set of real matrices having
n rows and m columns. Define tropical sum and product of matrices following the
same rules of classical linear algebra, but replacing addition (multiplication) by tropical
addition (multiplication). We will never use classical multiplication of matrices, in this
note.

We will always write the coordinates of points in columns.
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By definition, a square real matrix A = (aij) is normal if aii = 0 and aij ≤ 0, all
i, j ∈ [n]. Any real matrix can be normalized, not uniquely; see [7, 8] for details. A
matrix is idempotent if A = A � A. If each diagonal entry of A = (aij) vanishes, then
A ≤ A�A, because for each i, j ∈ [n], we have

aij ≤ max
k∈[n]

aik + akj = (A�A)ij .

We will work with normal idempotent matrices (NI, for short). Being NI is characterized
by the following linear equalities and inequalities:

aii = 0, aij ≤ 0, aik + akj ≤ aij , i, j, k ∈ [n], card{i, j, k} ≥ 2. (1)

In particular, aik + aki ≤ 0, for i, k ∈ [n].

The tropical determinant (also called tropical permanent, max–algebraic permanent,
etc.; see [8, 33]) of A = (aij) ∈ Rn×n is defined as

|A|trop = max
σ∈Sn

a1σ(1) + a2σ(2) + · · ·+ anσ(n),

where Sn denotes the permutation group in n symbols. The matrix A is tropically
singular if this maximum is attained twice, at least. Otherwise, A is tropically regular.
We will never use classical determinants in this note. See [15] for tropical rank issues.

Two different points p′, q′ in Rn determine the following set of tropical linear combi-
nations:

{λ� p′ ⊕ µ� q′ ∈ Rn : λ, µ ∈ R}. (2)

This set is closed under tropical multiplication by any real number ν i. e., it is closed
under classical addition of vectors νu, for u = (1, . . . , 1). Therefore, it is useful to work
in the quotient space

Qn−1 := Rn/ ∼ (3)

where (a1, a2, . . . , an) ∼ (b1, b2, . . . , bn) if

(a1, a2, . . . , an) = ν � (b1, b2, . . . , bn) = (ν + b1, ν + b2, . . . , ν + bn),

for some ν ∈ R. The class of a = (a1, . . . , an) ∈ Rn will be denoted [a1, . . . , an] or
a. The operations ⊕ and � carry over to Qn−1. Each element in Qn−1 has a unique
representative whose last coordinate is null ; in particular, Qn−1 can be identified with
the classical hyperplane

Hn := {x ∈ Rn : xn = 0} (4)

inside Rn. As vector spaces, Hn is isomorphic to Rn−1. We will often identify Qn−1 with
Hn in the sequel. By this identification, the topology induced by the tropical distance
corresponds to the usual topology.

Given different points p, q ∈ Qn−1, consider representatives p′, q′ in Rn. The image
of (2) in Qn−1 is denoted tconv(p, q) and called the tropical line segment determined by
p and q. By [14], the set tconv(p, q), viewed in Hn, is the concatenation of, at most,
n − 1 ordinary line segments, and the slope of each such line segment is a zero–one
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vector. For negative λ, very large in absolute value, we get λ � p′ ⊕ µ � q′ = µ � q′,
whence λ � p ⊕ µ � q = q is an endpoint of tconv(p, q). (Here we have a difference
between classical and tropical mathematics. In classical mathematics, expression (2)
corresponds to a line, not a segment!) The tropical segment tconv(p, q) is compact and
connected, classically.

For p ∈ Rn, set
||p|| := max

i,j∈[n]
{|pi|, |pi − pj |}.

For p, q ∈ Qn−1, choose (unique) representatives p′, q′ ∈ Rn with null last coordinate
and set

d(p, q) := ||p′ − q′|| = max
i,j∈[n]

{|pi − qi|, |pi − qi − pj + qj |}. (5)

This defines a distance (or a metric) in (Qn−1,⊕,�), called tropical distance; see [10,
13, 14, 32]. We will not use any other distance in this paper.

Recall that the integer length (also called lattice length) of a classical segment ab
in Rn joining points a and b is the ratio between the Euclidean length of ab and the
minimal Euclidean length of integer vectors parallel to ab. If a, b ∈ Z2, then the integer
length of ab is one less the number on integer points on the segment ab.

Recall that the tropical segment tconv(p, q) is a concatenation of classical bounded
segments. Thus, the integer length of tconv(p, q) is the sum of the integer lengths of
those segments. It turns out that d(p, q) equals the integer length of tconv(p, q).

Notice that d is additive for tropically collinear points. For example, given p, q, r
and s ∈ Q2 (represented in Figure 1 by points in H3 ' R2), with p′ = (−2,−2, 0)t,
q′ = (0, 0, 0)t, r′ = (−5,−2, 0)t and s′ = (−2,−5, 0)t, we have d(p, q) = 2 (not 2

√
2!),

d(r, s) = max{3, 6} = 6 = 3 + 3 and d(r, q) = max{5, 2, 3} = 5 = 3 + 2 = d(s, q).

(−5,−2,0)
t
=r´

(−2,−2,0)
t
=p´

(0,0,0)
t
=q´

(−2,−5,0)
t
=s´

3

3

2

Fig. 1. Tropical line in Q2 with vertex at the point p = [−2,−2, 0]t.

It looks like a tripod. Distances are indicated in green.

For any S ⊆ [n], write eS :=
∑

j∈S ej and notice that

eS = −eSc in Qn−1, (6)

where Sc is the complementary to S in [n]. In particular, e12...n = 0.
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Any unbounded closed segment in Rn−1 in the direction of some canonical basis
vector and negative sense is called a ray. Write rj for a ray in the ej direction, for
j ∈ [n − 1]. Any unbounded closed segment in the direction of e12...n−1 and positive
sense is also called a ray. By abuse of notation, we denote such a ray by rn. A ray rj

is maximal inside a line L if the endpoint of rj is a vertex of L. An edge is a bounded
closed segment.

We have ⊕ = max and � = +. Then, a tropical monomial is a classical linear form∑
i aixi, and a tropical polynomial is a maximum

P (x1, x2, . . . , xn) = max
a∈A

ca + a1x1 + a2x2 + · · · anxn, ca ∈ R,

and A ⊂ Nn finite. The corresponding function P : Rn → R is piecewise linear and
concave. The tropical hypersurface determined by P in Rn is the set of points where
the maximum is attained twice, at least. Equivalently, it is the set of points where P
is not differentiable; see [5, 6, 17, 22, 31, 33, 34]. In particular, we have tropical lines,
planes and hyperplanes in Rn. Then we mod out by ∼, to get tropical lines, planes and
hyperplanes in Qn−1.

We work in (Qn−1,⊕,�). Algebraically, a tropical line in codimension one (i. e., in
Q2) is determined by one tropical polynomial of degree one. A tropical line in higher
codimension is determined by an ideal generated by degree–one tropical polynomials.
Tropical lines have been thoroughly studied in [34]. The paper [33] contains a detailed
description of tropical lines in Q3; see below p. 414.

A generic line L in Q2 looks like a tripod in H3 ' R2; see Figure 1. It consists
of three rays r1, r2, r3 meeting at vertex. If L = L(p, q), then the vertex is computed
by the tropical Cramer’s rule; see [33, 36, 38]. It goes as follows: given coordinates
[p1, p2, p3]t, [q1, q2, q3]t for p and q, consider the 2× 2 tropical minors:

mij :=
∣∣∣∣ pi qi

pj qj

∣∣∣∣
trop

= max{pi + qj , pj + qi}. (7)

Then the vertex of L(p, q) is

[−m23,−m13,−m12]t. (8)

Fix n = 4. Let us identify Q3 with H4 ' R3. Set theoretically, a tropical line L in
R3 consists of four rays r1, r2, r3, r4 and, in the generic case, an edge r:

L = r ∪
4⋃

j=1

rj .

We have rj∩r 6= ∅, for all j ∈ [4]. If r collapses to a point (in the non–generic case), then
rj ∩rk 6= ∅, for all j, k ∈ [4]. A line L in Q3 belongs to one of the following combinatorial
types:

{12, 34}, {13, 24}, {14, 23}, {1234}.
Indeed, the line L is of type {ij, kl} if and only if L has two vertices, denoted vij and

vkl, and the segments r, ri, rj meet at vij and r, rk, rl meet at vkl, where {i, j, k, l} = [4].
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In particular, types can be written in various ways: for example, {12, 34} = {21, 34} =
{21, 43} = {34, 12} = {43, 12}, etc. Moreover, the line L is a trivalent tree if its type is
{12, 34}, {13, 24} or {14, 23}, and this is the generic case; see Figure 2. Let {i, j, k, l} =
[4]. We can assume that i 6= 4 6= j, without loss of generality. Notice that the direction
of the segment r of a line L of type {ij, kl} is eij , by the balancing condition. On the
other hand, if the type of L is {1234}, then the edge r has collapsed to a point, and the
four rays r1, r2, r3, r4 meet at a point, called vertex of L and denoted v1234.

r
1

r
2

r
3

r
4

v
1234

r
1

r
2

r
3

r
4

v
12

v
34

r
1

r
2 r

3

r
4v

14

v
23

r

r

Fig. 2. Some tropical lines in 3–space: type {14, 23} on the left, type

{12, 34} center and type {1234}, on the right. These are non–planar

balanced polyhedral complexes in H4 ' R3, where the ray r4 points in

the direction e123, positive sense. The segment r separates rays r1, r4

from r2, r3 in the {14, 23} case.

It is well–known that two different points p, q ∈ Q3 determine a unique tropical line
L(p, q) passing through them and stable under small perturbations; see [14, 33, 34]. If
L = L(p, q) and we want to compute the vertices of this line, first we must find out
the combinatorial type of L. Here we follow [33]. For 1 ≤ i < j ≤ 4, consider the
2 × 2 tropical minors mij defined in (7). These minors can be arranged into an upper
triangular matrix

M =

 m12 m13 m14

m23 m24

m34

 . (9)

The mij are not independent: they satisfy the tropical Plücker relation, i. e., the following
maximum is attained twice, at least:

m := max{m12 + m34,m13 + m24,m14 + m23}. (10)

Then, by [33],

• the type of L(p, q) is {12, 34} when m12 + m34 < m,

• the type of L(p, q) is {13, 24} when m13 + m24 < m,

• the type of L(p, q) is {14, 23} when m14 + m23 < m,

• the type of L(p, q) is {1234} when the maximum m is attained three times.
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A point x belongs to L(p, q) if and only if

rk


p1 q1 x1

p2 q2 x2

p3 q3 x3

p4 q4 x4


trop

= 2;

This tropical rank condition means that the value of each of the following 3× 3 tropical
minors is attained twice, at least:

m1(x) :=

∣∣∣∣∣∣
p2 q2 x2

p3 q3 x3

p4 q4 x4

∣∣∣∣∣∣
trop

= max{x2 + m34, x3 + m24, x4 + m23}

m2(x) :=

∣∣∣∣∣∣
p1 q1 x1

p3 q3 x3

p4 q4 x4

∣∣∣∣∣∣
trop

= max{x1 + m34, x3 + m14, x4 + m13}

m3(x) :=

∣∣∣∣∣∣
p1 q1 x1

p2 q2 x2

p4 q4 x4

∣∣∣∣∣∣
trop

= max{x1 + m24, x2 + m14, x4 + m12}

m4(x) :=

∣∣∣∣∣∣
p1 q1 x1

p2 q2 x2

p3 q3 x3

∣∣∣∣∣∣
trop

= max{x1 + m23, x2 + m13, x3 + m12}.

Each tropical determinant above has been expanded by the last column, by the tropical
Laplace’s rule. Now, for any positive, large enough u ∈ R, the points

y1(u) =


−u

−m34

−m24

−m23

 , y2(u) =


−m34

−u
−m14

−m13

 , y3(u) =


−m24

−m14

−u
−m12

 , y4(u) =


−m23

−m13

−m12

−u


satisfy that the maximum mj(yj(u)) is attained three times, for each j ∈ [4]. Moreover,
the point yj(u) moves along a ray rj , as u tends to +∞.

Say the type of L(p, q) is {12, 34}. Then values u1, u2, u3, u4 ∈ R can be determined
so that y1(u1) = y2(u2) := v12 and y3(u3) = y4(u4) := v34, obtaining the following
vertices for L(p, q) in Q3:

v12 =


m13 −m23 −m34

−m34

−m24

−m23

 , v34 =


−m24

−m14

m13 −m12 −m14

−m12

 .

Say the type of L(p, q) is {13, 24}. Similar calculations yield the following vertices
for the line L(p, q), in this case:

v13 =


−m24

−m14

−m24 −m14 + m34

−m12

 , v24 =


−m23

−m13

−m12

−m13 −m12 + m14

 . (11)
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Say the type of L(p, q) is {1234}. Then we get

v1234 =


m13 + m14 −m34

m12

m13

m14

 .

Computations are similar for type {14, 23}.
Suppose now that n is arbitrary. A generic line L in Qn−1 is (identified with) a

balanced unrooted trivalent semi–labeled tree T on leaves marked 1, 2, . . . , n inside Hn '
Rn−1. Leaf j of T corresponds to ray rj of the line L, while the inner vertices of T are
left unlabeled. In particular, generic tropical lines sitting in Qn−1 and Qm−1 cannot be
homeomorphic, if n 6= m.

We consider the space Tn of phylogenetic trees, studied in detail in [4, 34] (although
this space is denoted G′′′2,n in [34]). Then Tn is a simplicial complex of pure dimension
equal to n− 4. The number of facets of Tn is

(2n− 5)!!

(i. e., the product of all odd numbers between 2n − 5 and 1, called Schröder number).
Each facet of Tn corresponds to a combinatorial type of unrooted trivalent semi–labeled
trees on n leaves, i. e., to a combinatorial type of generic line in Qn−1. In particular, for
n = 4, there are 3 types (we have seen these types above; they were denoted {12, 34},
{13, 24} and {14, 23}); for n = 5, there are 15 types; for n = 6, there are 105 types, and
so on.

It is known (see [30, 36]) that T5 is the Petersen graph: it has 15 edges (these corre-
spond to the 15 types of generic tropical lines in Q4) and 10 vertices (these correspond
to types of non–generic tropical lines, where the degree of some vertex of the line is 4).
Every generic tropical line in Q4 is a trivalent caterpillar tree on 5 leaves; see [34, 36].

Recall that a tree is caterpillar if it contains a path passing through every vertex
of degree ≥ 2. For instance, every tree on four leaves is caterpillar. See Figure 3 for
trivalent caterpillar and snowflake trees on six leaves.

It is known that T6 has 25 vertices, 105 edges and 105 triangles (i. e., there are 105
types of generic tropical lines in Q5): 90 triangles correspond to trivalent caterpillar
trees on 6 leaves, and 15 triangles to trivalent snowflake trees on 6 leaves; see [33, 34].

Any trivalent semi–labeled tree T on n leaves can be described by a finite family of
bipartitions of [n]: a bipartition for each inner edge of T .

Given points p, q ∈ Qn−1, we will have to describe L(p, q) as a tree, combinatorially.
If L(p, q) is trivalent, this will be achieved by giving a family of bipartitions of [n]:

{S1, S
c
1}, {S2, S

c
2}, . . . , {St, S

c
t },

for some t ∈ N and Sj ⊂ [n], j ∈ [t].

3. DIFFERENCES AND TROPICAL DISTANCES

Definition 3.1. Given numbers a, b, c, d ∈ R, the difference of the matrix
[

a b
c d

]
is

a + d− b− c (principal diagonal minus secondary diagonal).
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Fig. 3. Two trivalent semi–labeled trees on six leaves. The inner

vertices are not labeled. On the left, caterpillar having three inner

edges. This tree is described the bipartitions

{36, 1245}, {236, 145}, {2356, 14}. There is one inner edge separating

leaves marked 3 and 6, from leaves marked 1, 2, 4 and 5. On the

right, a snowflake tree having three inner edges. This tree is described

by the bipartitions {26, 1345}, {14, 2356}, {35, 1246}.

Consider A ∈ Rn×n and write i to denote the ith column of A. Let i, j, k, l ∈ [n] with

i < j and k < l. By A(kl; ij) we denote the minor
[

aki akj

ali alj

]
.

Definition 3.2. Fix the ith and jth columns of a matrix A ∈ Rn×n, with 1 ≤ i < j ≤ n.
For 1 ≤ k < l ≤ n, set F = (fkl) with

fkl = aki + alj − akj − ali

i. e., fkl is the difference of the minor A(kl; ij). (Obviously, the matrix F depends on i
and j.)

Clearly,
fkl + flr = fkr (12)

for k < l < r. This additivity (similar to that of Pascal triangle) tells us that F can be
recovered from entries fk−1,k. Compare with subadditivity of A shown in (1).

Lemma 3.3. If A ∈ Rn×n is NI and F is defined above, then fil ≥ 0, for i < l and
fjl ≤ 0, for j < l.

P r o o f . fil = alj − ali − aij ≥ 0 and fjl = aji + alj − ali ≤ 0, by (1). �

Examples of F can be found in p. 421 and 427.
For 1 ≤ i < j ≤ n, let LA

ij denote the line determined by columns ith and jth of A.
Write Lij , if A is understood. We will see that some entries of the absolute value matrix
|F | are equal to some tropical distances between certain points of Lij, the distance being
defined in (5).

To begin with, we have an easy lemma.
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Lemma 3.4. Assume A ∈ Rn×n is NI and fix 1 ≤ i < j ≤ n with F as in definition
3.2. Then d(i, j) = |fij |.

P r o o f . We can assume i = 1 and j = 2, by a change of coordinates. Then, by
equivalence in Qn−1,

1− 2 =


−a12

a21

a31 − a32

...
an1 − an2

 =


0

a21 + a12

a31 − a32 + a12

...
an1 − an2 + a12

 .

Entries in the last column are non positive, by (1), the smallest being a21 + a12 ≤ 0,
again by (1). Thus, d(1, 2) = |a21 + a12| = |f12|. �

4. CASE N = 4

Assume that i 6= 4 6= j. A generic line L is a semi–labeled trivalent tree on four leaves.
It has just one inner edge r. Recall that L is of type {ij, kl} if and only if eij is the
direction of the edge r. Leaves i, j (resp. k, l) lie to one endpoint of r (resp. to the other
endpoint).

Recall that LA
ij denotes the line determined by columns ith and jth of A.

Lemma 4.1. Assume A ∈ R4×4 is a NI matrix. Let {i, j, k, l} = [4] with i < j. Then
the type of LA

ij is not {ij, kl}; it is {ik, jl}, {il, jk} or {1234}; (easy to remember: i and
j must be separated by the comma, unless the type is {1234}).

P r o o f . Without loss of generality, assume that i = 1, j = 2. Write p = 1, q = 2 and
L(p, q) = LA

12. Compute M in (9) and m in (10), using (1), to obtain

M =

 0 a32 a42

a31 a41

α

 , m = max{α, a32 + a41, a31 + a42}, α = |A(34; 12)|trop. (13)

Then, the value α is attained at the main (resp. secondary) (resp. both) diagonal(s)

of A(34; 12) =
[

a31 a32

a41 a42

]
if and only if α = a31 + a42 (resp. α = a32 + a41) (resp.

a31 + a42 = a32 + a41) if and only if the type of L12 is {13, 24} (resp. {14, 23}) (resp.
{1234}). Thus, L12 is not {12, 34}. �

Remark: Looking at the former proof and definition 3.2, notice that the type of LA
12

is {13, 24} if and only if f34 > 0. If the type were {14, 23}, then f34 < 0 and if the type
were {1234}, then f34 = 0.

Recall that maximal rays inside a line were defined in p. 413.
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Lemma 4.2. Assume A ∈ R4×4 is NI and let {i, j, k, l} = [4] with i < j. Then the
vertices of the line LA

ij belong to the tropical segment tconv(i, j). Moreover, i ∈ rj and
j ∈ ri, where ri, rj are maximal rays in LA

ij .

P r o o f . Without loss of generality, assume that i = 1, j = 2. The points 1 and 2 have
coordinates 

0
a21

a31

a41

 ,


a12

0
a32

a42

 ,

respectively and we know that the coordinates of the vertices of L12 depend on the type
of L12. This type is not {12, 34}, by lemma 4.1.

Say the type of L12 is {13, 24}. Then M , m and α are shown in (13), with

a32 + a41 < a31 + a42 = α. (14)

Using (11), the vertices of L12 are

v13 =


−a41

−a42

a31 − a41

0

 , v24 =


−a31

−a32

0
a42 − a32

 . (15)

We have

v13 =


−a41

a21 − a41

a31 − a41

0

⊕


a12 − a42

−a42

a32 − a42

0

 = 1� (−a41)⊕ 2� (−a42)

and

v24 =


−a31

a21 − a31

0
a41 − a31

⊕


a12 − a32

−a32

0
a42 − a32

 = 1� (−a31)⊕ 2� (−a32),

using inequalities (1) and (14). This shows that v13 and v24 belong to tconv(1, 2).
Moreover

1− v13 =


a41

a21 + a42

a41

a41

 =


0

a21 + a42 − a41

0
0

 =


0

f24

0
0

 , (16)

whence 1 ∈ r2. Similarly, 2− v24 = [−f13, 0, 0, 0]t, whence 2 ∈ r1.
Computations are analogous if the type of line L12 is {14, 23}. �

Recall that the tropical distance induces the usual topology. By compactness of
tconv(i, j), there is a vertex in LA

ij closest to i, denoted ij, and a vertex in LA
ij closest



420 M. J. DE LA PUENTE

to j, denoted ji, distances considered tropically. Of course, ji = ij if and only if Lij is
{1234}.

In the following theorem, notice that distances depend on the type of LA
ij .

Theorem 4.3. Assume A ∈ R4×4 is NI and let {i, j, k, l} = [4] with i < j. If the type
of the line LA

ij is {ik, jl}, then

1. d(i, ij) = |fjl|,

2. d(j, ji) = |fik|,

3. d(ij, ji) = |fkl| (this case is easy to remember).

P r o o f . Without loss of generality, assume that i = 1, j = 2. We know that the type
of L12 is not {12, 34}, by lemma 4.1.

Say the type of L12 is {13, 24}, so that k = 3, l = 4. By definition of F and (14), we
have f34 > 0. Go back to (15), where coordinates for v13 and v24 were computed, to get

v13 − v24 =


a31 − a41

a32 − a42

a31 − a41

a32 − a42

 =


a31 − a41 − a32 + a42

0
a31 − a41 − a32 + a42

0

 =


f34

0
f34

0


and we obtain

d(v13, v24) = f34.

Moreover, from (16) and lemma 3.3 (for j = 2), we get

d(1, v13) = −f24 = |f24|,

Similarly,
d(2, v24) = f13 = |f13|.

Now

2− v13 =


a12 + a41

a42

a32 + a41 − a31

a42

 =


a12 + a41 − a42

0
a32 + a41 − a31 − a42

0

 =


−f14

0
−f34

0

 .

By additivity (12), we have f13 + f34 = f14, with f13 ≥ 0, f14 ≥ 0 and f34 > 0. Thus,
by the definition of tropical distance, we get

d(2, v13) = max{f14, f34, f13} = f14.

We have d(2, v24) = f13 < f14 = d(2, v13), showing that v24 is closer to 2 than v13. Thus
we can relabel as follows

v24 = 21, v13 = 12.

This proves the three statements for type {13, 24}. Computations are similar if the type
of L12 is {14, 23}. �
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Example 4.4. Assume that ∗ ∈ R are such that A is NI, with

A =


0 −12 ∗ ∗

−10 0 ∗ ∗
−11 −14 0 ∗
−15 −13 ∗ 0

 ,

(this can be achieved, for instance, taking −20 ≤ akl ≤ −10, for k, l = 3, 4 and k 6= l).
We have

F =

 22 9 14
−13 −8

5


and d(1, 2) = 22, by lemma 3.4. By the last part in theorem 4.3, we get

d(12, 21) = |f34| = 5 6= 0,

whence the type of L12 is not {1234}. It can be either {13, 24} or {14, 23}, since indices
1 and 2 must be separated by the comma, by lemma 4.1. We have

1− 2 =


12

−10
3

−2

 =


14
−8

5
0

 , d(1, 2) = 22.

If the type were {14, 23}, by theorem 4.3 we would have

d(1, 12) = |f23| = 13, d(2, 21) = |f14| = 14, 22 6= 13 + 5 + 14,

contradicting that the tropical distance is additive for three tropically collinear points.
Thus the type is {13, 24} and then

d(1, 12) = |f24| = 8, d(2, 21) = |f13| = 9, 22 = 8 + 5 + 9.

A longer way to obtain the same result is computing M,m and α in (13). We get
that the type of LA

12 is {13, 24}, and then formulae (11) provide the coordinates of 12
and 21.

Corollary 4.5. Assume A ∈ R4×4 is NI and let 1 ≤ i < j ≤ 4. If the type of the line
LA

ij is {1234}, then for k ∈ [4] \ {i, j} we have

1. d(i, ij) = |fjk|,

2. d(j, ji) = |fik|.

5. GENERAL CASE

Our aim for this section is to describe the tree L(p, q) through the matrix F . Let pq
(resp. qp) denote the vertex closest to p (resp q) in L(p, q), if such a vertex exists. These
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two are the only inner vertices of the line L(p, q) that we will consistently label. Vertices
of L(p, q) may receive temporary labels, such as v, w, x, y, z etc.

Let A ∈ Rn×n be a NI matrix. For the rest of the paper, we assume that p = 1
and q = 2, so that L(p, q) = L(1, 2) = LA

12. This is no loss of generality. If F is as in
definition 3.2, then

f1k ≥ 0, f2k ≤ 0, ∀k (17)

f12 = max
1≤k<l≤n

|fkl| (18)

by lemma 3.3 and the NI condition (1) on A.

Notation: For 3 ≤ s ≤ n, let As (resp. F s) denote the principal minor of A (resp.
of F ) of order s; in particular, An = A. The first two columns of As are denoted 1s

and 2s. The line L(1s, 2s) is denoted Ls. It sits inside Qs−1, which can be identified
with Hs ' Rs−1. In particular, Ln = L(p, q). Let 12s (resp. 21s) denote the vertex of
Ls closest to 1s (resp. to 2s), if such a vertex exists. Let rs

j denote any ray in the ej

negative sense inside Rs−1, for j ∈ [s− 1], and rs
s any ray in the e12...s−1 positive sense.

We know that Ls is the finite union of s rays rs
1, . . . , r

s
s and some edges h1, . . . , ht, for

certain t ∈ N ∪ {0}.

Definition 5.1. Fix s with 3 ≤ s ≤ n. If, for some 1 ≤ k < l ≤ s, |fkl| equals either
the distance between two adjacent vertices in Ls or it equals d(1s, 12s) or d(21s, 2s) or
d(1s, 2s), then we will say that fkl is s–active.

Definition 5.2. If |a| = |b| + |c| with non–zero a, b, c ∈ R, we say that a fractures by
means of b. We also say that a was formerly active and that b, c are newly active.

Consider the matrix F s and assume that fkl is (s−1)–active, with 1 ≤ k < l ≤ s−1.
Then, fkl fractures by means of some entry of the sth column, if and only if

|fkl| > |fks|. (19)

Indeed, we will have |fkl| = |fks| + |fls|, following from additivity (12). In practice, to
find out if a fracture occurs by means of some entry of the sth column, we can minimize
the absolute value of the entries of the sth column of F s.

Lemma 5.3. Let A ∈ Rn×n be NI and 3 ≤ s ≤ n. Then point 2s lies to the northwest
of 1s inside Hn ⊂ Rn.

P r o o f . By equivalence in Qn−1, the coordinates of 1s and 2s in Hn are

−as1

a21 − as1

a31 − as1

...
as−1,1 − as1

0


,



a12 − as2

−as2

a32 − as2

...
as−1,2 − as2

0


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where the first and second coordinates compare as follows:

−as1 ≥ a12 − as2,

a21 − as1 ≤ −as2,

by the NI condition (1) on A. This implies the result. �

Theorem 5.4. Let n ≥ 3 and assume p, q are different points in Qn−1 having represen-
tatives p′, q′ in Rn whose coordinates are the first and second columns of a NI matrix
A ∈ Rn×n. Then the matrix F , as in definition 3.2, describes the line L(p, q) as a
balanced unrooted semi–labeled tree on n leaves, which is caterpillar. Every vertex in
L(p, q) belongs to tconv(p, q). The vertices pq and qp exist in L(p, q). The distances be-
tween pairs of adjacent vertices in L(p, q) and the distances d(p, pq), d(qp, q) and d(p, q)
are certain entries of the matrix |F |. In addition, if p and q are generic, then L(p, q) is
trivalent.

P r o o f . We have p = 1 and q = 2 and d(1, 2) = f12, by lemma 3.4 and (17). Write
L = L(1, 2) = LA

12.

First, let us assume that the couple p, q is generic. Then, L and F are also generic.

With notation from p. 422, let us begin with the line L2, joining the points
[

0
a21

]
=[

−a21

0

]
and

[
a12

0

]
. Then

d(12, 22) = |a12 + a21| = f12,

by lemma 3.4. We have f12 6= 0, by genericity of F and f12 is 2–active. This is the
initial step.

The proof proceeds by recursion, for 3 ≤ s ≤ n. In the sth step, the line Ls is
obtained from the line Ls−1, by tropical modification. This means that exactly one
(s − 1)–active entry of F s−1 fractures. Moreover, after the sth step is completed, we
have the following properties:

1. in each row of F s, there is some s–active entry,

2. there are exactly two s–active entries in the last column of F s; these are newly
active,

3. there are some negative and some positive s–active entries in F s,

4. the sum of the absolute values of all s–active entries in F s is equal to f12.

• if s = 3, then f12 + f23 = f13, by additivity (12). By (17) and (18),

|f12| = |f13|+ |f23|
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is a fracture of d(12, 22) = f12. The line L3 has a vertex, which we denote w3,
whose coordinates are given in (8)

w3 =

 −m23

−m13

−m12

 =

 −a31

−a32

0

 = 1� (−a31)⊕ 2� (−a32),

equalities holding by the NI hypothesis on A. Then

13 − w3 =

 a31

a32 + a21

a31

 =

 0
f23

0

 , 23 − w3 =

 a31 + a12

a32

a32

 =

 −f13

0
0


(20)

whence
d(13, w3) = |f23| = −f23, d(23, w3) = |f13| = f13.

Now f13, f23 become 3–active, while f12 stops being active.

Equalities (20) tell us that walking northbound from point 13 for |f23| units, we
reach w3, and walking eastbound from point 23 for f13 units, we also reach w3; see
Figure 4, left. The line L3 satisfies the statement of the theorem and it is trivalent.

• if s = 4, there are two cases: either f34 < 0 or f34 > 0 (by genericity of F , we
have f34 6= 0). Both cases were studied in theorem 4.3. Being generic, the tree
L4 is of type {13, 24} or {14, 23}, by lemma 4.1. This means that leaves 1 and 2
are separated already at step s = 4. They will remain separated ever after. In
particular, we will have

1s ∈ rs
2, 2s ∈ rs

1, ∀s ≥ 4. (21)

The fracture is

d(13, w3) = |f23| = |f24|+ |f34|, if f34 < 0 (22)

or
d(23, w3) = |f13| = |f14|+ |f34|, if f34 > 0. (23)

In the previous two steps (s = 3 or s = 4) two entries in the last column of F s

became s–active, while one entry of F s−1 stopped being active, due to the fracture.
Moreover, properties 1 to 4 in p. 423 hold true.

Assuming that properties 1 to 4 hold at step (s− 1), notice that exactly one fracture
of one (s− 1)–active entry of F s−1 occurs at step s, for each 5 ≤ s ≤ n. Indeed, recall
(19) and consider i ∈ [s− 1] (i depending on s) such that

|fis| = min
k∈[s−1]

|fks|. (24)

By genericity of F , such an index i is unique and thus, some (s− 1)–active entry on the
ith row of F s fractures. We have only one fracture at step s, due to properties 1 to 4
and the fact that equalities (12) are not independent, for a fixed s.
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Fig. 4. Modification and fracture occurring at step s = 4, when

f34 < 0.

Now we proceed to describe L as a tree, based on data in F . Assume, by recursion,
that we have described the tree Ln−1 and that Ln−1 is trivalent. Write L′ instead of
Ln−1, for simplicity (similar meaning for p′, q′, F ′, etc.). Being trivalent, L′ is described
by a finite family of bipartitions of [n− 1]:

{S1, S
c
1}, {S2, S

c
2}, . . . , {St, S

c
t },

where t = n − 4 is the number of inner edges of L′ (by recursion), Sj ⊂ [n − 1], with
cardSj ≥ 2 and card Sc

j ≥ 2 (by trivalency). Moreover, the distances between pairs of
adjacent vertices in L′ and the distances d(p′, p′q′), d(q′p′, q′) and d(p′, q′) are certain
entries of |F ′|. Now, the tree L is a tropical modification of L′. That means that a ray
rn
n sprouts up from L′ at some point of L′, labeled w temporarily, with the balancing

condition holding at w inside L. The point w becomes a vertex of L (although, it is not
a vertex in L′). By genericity, we face two cases:

1. If w belongs to the relative interior of some inner edge r of L′. Say this segment
corresponds to the bipartition {St, S

c
t }. We know that the leaves 1 and 2 are

separated since step s = 4, so that

{1, 2} ∩ St 6= ∅ and {1, 2} ∩ Sc
t 6= ∅.

Say 1 ∈ St and 2 ∈ Sc
t . Removal of the relative interior of r splits the tree L′

into two subtrees, L′1 and L′2, named so that 1 is a leaf in L′1. Then, the tree L is
described by

{Ŝ1, Ŝc
1}, . . . , {Ŝt−1, Ŝc

t−1}, {St ∪ {n}, Sc
t }, {St, S

c
t ∪ {n}},

where

Ŝ =

{
S ∪ {n}, if Sc is a subset of leaves of L′1 or of L′2,
S, otherwise.
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Moreover, we know that the endpoints of r are vertices of L′: let us label them
v1, v2 temporarily, so that v1 ∈ L′1. Then

d(v1, v2) = |fkl|,

for some 1 ≤ k < l ≤ n−1 and so fkl is (n−1)–active. Due to tropical modification,
this entry fractures, yielding

|fkl| = |fkn|+ |fln|

and so
d(v1, w) = |fln|, d(v2, w) = |fkn|, (25)

or
d(v1, w) = |fkn|, d(v2, w) = |fln|. (26)

We decide between (25) and (26) by computing the coordinates of w in two different
ways: beginning from 1 and beginning from 2.

2. If w belongs to the relative interior of a ray r′j, some j ∈ [n− 1]. Then L is given
by

{{j, n}, {1, . . . , j − 1, j + 1, . . . , n− 1}}, {Ŝ1, Ŝc
1}, {Ŝ2, Ŝc

2}, . . . , {Ŝt, Ŝc
t },

where

Ŝ =

{
S ∪ {n}, if j ∈ S,
S, otherwise.

Due to tropical modification, one fracture of one (n− 1)–active fkl occurs:

|fkl| = |fkn|+ |fln|.

By recursion, we have |fkl| = d(1′, 12′) or |fsl| = d(2′, 21′), and recalling that
1′ ∈ r′2 and 2′ ∈ r′1 (this holds true since step s = 4), we get

j = 2 or j = 1. (27)

• If |fkl| = d(1′, 12′), then j = 2. We relabel w as 12, relabel 12′ as v and
obtain

d(1, 12) = |fln|, d(12, v) = |fkn|, (28)

or
d(1, 12) = |fkn|, d(12, v) = |fln|. (29)

We decide between (28) and (29) by computing the coordinates of w in two
different ways: beginning from 1 and beginning from 2.

• If |fkl| = d(2′, 21′), then the result is similar.
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If the couple p, q is not generic, a sufficiently small perturbation p̃, q̃ of them is generic.
We apply the previous paragraphs to p̃, q̃ and we obtain a line L̃. Then, the line L can
be viewed as the result of the collapsing of some adjacent vertices on L̃, or the points p
and pq may coincide. Same for q and qp. Passing from L̃ to L amounts to vanishing of
some s–active f̃kl, with 1 ≤ k < l ≤ s ≤ n. The tree L is caterpillar, though it might
not be trivalent. �

Example 5.5. For n = 7, 

0 −19
−15 0
−17 −14
−16 −14
−20 −21
−18 −17
−27 −15


are the first two columns of a NI matrix A = (aij) (take, for instance −28 ≤ ast ≤ −14,
if s 6= t and 3 ≤ t ≤ 7). Then d(1, 2) = d(12, 22) = |f12| = f12 = 34, by lemma 3.4 and

F =


34 22 21 18 20 31

−12 −13 −16 −14 −3
−1 −4 −2 9

−3 −1 10
2 13

11

 .

For 3 ≤ s ≤ 7, active entries of F s will be boxed.

r
1

3

r
2

3

r
3

3

w
3

2
3

1
3

22

12

Fig. 5. Construction of the tree L in example 5.5: step s = 3.

• s = 3 (see Figure 5). The vertex of the line L3, denoted w3, is [−a31,−a32, 0]t =
[17, 14, 0]t, by Cramer’s rule (8). We have a fracture

34 = 22 + 12
|f12| = |f13|+ |f23|
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and

13 + 12e2 =

 0
−3
−17

 =

 3
0

−14

 = 23 + 22e1 = w3. (30)

Thus
d(13, w3) = 12 = |f23|, d(23, w3) = 22 = |f13|.

The 3–active fsl are boxed below:

F =


34 22 21 18 20 31

−12 −13 −16 −14 −3
−1 −4 −2 9

−3 −1 10
2 13

11

 .

r
1

4

r
2

4

r
3

4

r
4

4

12
4

2
4

1
4

w
4
=21

4

21

12

1

Fig. 6. Construction of the tree L in example 5.5: step s = 4.

• s = 4 (see Figure 6). We have −1 = f34 < 0 so, by the remark after lemma 4.1,
the type of L4 is {14, 23}. This means that r4

4 and r4
1 meet, and r4

2 and r4
3 meet

too inside L4. This is case 2 of the previous proof, with j = 2. Since 24 ∈ r4
1, then

the point where r4
4 and r4

1 meet must be 214. The entry f13 is 3–active and we
have the fracture

22 = 21 + 1
|f13| = |f14|+ |f34|

of d(23, w3) = |f13|. In fact, w4 can be relabeled 214 and

124 = 14 + 12e2 =


0

−3
−17
−16

 , d(14, 124) = |f23| = 12,
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214 = 24 + 21e1 =


2
0

−14
−14

 , d(24, 214) = |f14| = 21,

214 − 124 =


2
3
3
2

 =


0
1
1
0

 , d(124, 214) = 1 = |f34|,

34 = 21 + 1 + 12

and

F =



34 22 21 18 20 31
−12 −13 −16 −14 −3

−1 −4 −2 9
−3 −1 10

2 13
11


.

r
1

5

r
2

5

r
3

5

r
4

5
r
5

5

12
5

2
5

1
5

w
5
=21

5

18 3

12

1
v

Fig. 7. Construction of the tree L in example 5.5: step s = 5.

• s = 5 (see Figure 7). Then |f14| > |f15| and f14 is 4–active, so that

21 = 18 + 3
|f14| = |f15|+ |f45|

is a fracture of d(24, 214) = |f14|. This is case 2 of previous proof with j = 1.
Thus, the tree L5 is given by

{15, 234}, {145, 23}
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and it is caterpillar. We have

15 + 12e2 + 1e23 + 3e234 =


0
1

−13
−13
−20

 =


−1

0
−14
−14
−21

 = 25 + 18e1, (31)

so that this point is w5. Then,

d(15, 125) = |f23| = 12, d(25, 215) = |f15| = 18.

In addition to 15, 125, 215 and 25, there is one more vertex in L5, denoted v tem-
porarily, and we have

d(125, v) = |f34| = 1, d(215, v) = |f45| = 3,

34 = 18 + 3 + 1 + 12,

F =



34 22 21 18 20 31
−12 −13 −16 −14 −3

−1 −4 −2 9
−3 −1 10

2 13
11


.

r
1

6

r
2

6

r
3

6

r
4

6
r
5

6
r
6

6

12
6

2
6

1
6

21
6

18

12

112

vw
6

Fig. 8. Construction of the tree L in example 5.5: step s = 6.

• s = 6 (see Figure 8). Then |f45| > |f46| and f45 is 5–active, so that

3 = 1 + 2
|f45| = |f46|+ |f56|
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is a fracture of d(215, v) = |f45|. A ray r6
6 sprouts up from the segment of L5

joining 215 and v. This is case 1 of the previous proof. This happens at a point
denoted w6 temporarily and, therefore, tree L6 is given by

{15, 2346}, {156, 234}, {1456, 23}.

Thus, L6 is caterpillar and we have

16 + 12e2 + 1e23 + 1e234 =


0

−1
−15
−15
−20
−18

 =


1
0

−14
−14
−19
−17

 = 26 + 18e1 + 2e15,

and this point is w6. Thus,

d(216, w6) = |f56| = 2, d(w6, v) = |f46| = 1, (this information is new)

d(26, 216) = |f15| = 18, d(v, 126) = |f34| = 1, d(126, 16) = |f23| = 12,

34 = 18 + 2 + 1 + 1 + 12,

F =



34 22 21 18 20 31
−12 −13 −16 −14 −3

−1 −4 −2 9
−3 −1 10

2 13
11


.

r
1

r
2

r
3

r
4

r
5

r
6

r
7

x

2

1

21

18

9

3

112

yz

w
7
=12

Fig. 9. Construction of the tree L in example 5.5: final step.
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• s = 7 (see Figure 9). Then |f23| > |f27| and f23 is 6–active, whence

12 = 3 + 9
|f23| = |f27|+ |f37|

is a fracture of d(16, 126) = |f23|. A ray r7
7 sprouts out of r6

1 (this is case 2 of
previous proof, with j = 2) at a point labeled w7. The tree L = L7 is given by

{15, 23467}, {156, 2347}, {1456, 237}, {13456, 27}

and we have

1+3e2 =



0
−12
−17
−16
−20
−18
−27


=



12
0

−5
−4
−8
−6
−15


= 2+18e1 +2e15 +1e156 +1e1456 +9e13456 (32)

so that this point is w7. Now, we relabel w7 as 12. In addition to vertices 12 and
21, there are three more vertices in L, labeled x, y and z. We have

d(1, 12) = 3, d(12, x) = 9, (this information is new)

d(x, y) = d(y, z) = 1, d(z, 21) = 2, d(21, 2) = 18,

34 = 18 + 2 + 1 + 1 + 9 + 3,

F =



34 22 21 18 20 31
−12 −13 −16 −14 −3

−1 −4 −2 9
−3 −1 10

2 13
11


,

and finally

|F | =


∗ ∗ ∗ d(2, 21) ∗ ∗

∗ ∗ ∗ ∗ d(1, 12)
d(x, y) ∗ ∗ d(12, x)

∗ d(y, z) ∗
d(z, 21) ∗

∗

 .

Remark: An algorithm is implicit in the previous process; the details of it are post-
poned to a future paper.
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[7] P. Butkovič: Simple image set of (max, +) linear mappings. Discrete Appl. Math. 105
(2000), 73–86.
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