[3] Arezelier, D., Angulo, M., Bernussou, J.: Sliding surface design by quadratic stabilization and pole placement. In: Proc. 4th European Control Conference, 1997.
[4] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.:
Linear matrix inequalities in system and control theory. Stud. Appl. Math. 15 (1994).
MR 1284712 |
Zbl 0816.93004
[5] Castaños, F., Fridman, L.:
Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Control 51 (2006), 5, 853-858.
DOI 10.1109/TAC.2006.875008 |
MR 2232613
[9] Choi, H.:
LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems. IEEE Trans. Automat. Control 52 (2007), 4, 736-742.
DOI 10.1109/TAC.2007.894543 |
MR 2310056
[11] Oliveira, M. C. De, Skelton, R. E.: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control. Springer, Berlin 1994.
[12] Dorling, C. M., Zinober, A. S. I.:
Two approaches to hyperplane desing in multivariable variable structure control systems. Internat. J. Control 44 (1986), 1, 65-82.
DOI 10.1080/00207178608933583
[13] Dorling, C. M., Zinober, A. S. I.:
Robust hyperplane desing in multivariable variable structure control systems. Internat. J. Control 48 (1988), 5, 2043-2054.
DOI 10.1080/00207178808906304 |
MR 0973773
[14] Draženović, B., Milosavljević, C., Veselić, B., Gligić, V.: Comprehensive approach to sliding subspace design in linear time invariant systems. In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.
[15] Edwards, C.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London 1998.
[17] Fridman, L., Moreno, J., Iriarte, R.:
Sliding Modes After the First Decade of the 21st Century. Springer, Berlin 2011.
MR 3087279
[18] Hermann, C., Spurgeon, S. K., Edwards, C.:
A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. Internat. J. Control 72 (2001), 1194-1209.
DOI 10.1080/00207170110061040 |
MR 1852597
[19] Huang, J. Y., Yeung, K. S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula. In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.
[20] Hung, Y. S., Macfarlan, A. G. J.:
Multivariable Feedback: A Quasi-Classical Approach. Volume 40. Springer-Verlag, Berlin 1982.
MR 0790848
[22] Kočvara, M., Sting, M.: Penbmi, version 2.1. www.penopt.com, 2008.
[23] Mehta, A. J., Bandyopadhyay, B., Inoue, A.:
Reduced-order observer design for servo system using duality to discrete-time sliding-surface design. IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800.
DOI 10.1109/TIE.2010.2040555
[25] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.
[27] Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Conference on Decision and Control 1996.