Previous |  Up |  Next

Article

Keywords:
graded algebra; structurable algebra; exceptional simple Lie algebra
Summary:
We describe two constructions of a certain $\mathbb Z_4^3$-grading on the so-called Brown algebra (a simple structurable algebra of dimension $56$ and skew-dimension $1$) over an algebraically closed field of characteristic different from $2$. The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types $E_6$, $E_7$ and $E_8$.
References:
[AM99] Albuquerque H., Majid S.: Quasialgebra structure of the octonions. J. Algebra 220 (1999), no. 1, 188–224. DOI 10.1006/jabr.1998.7850 | MR 1713433 | Zbl 0999.17006
[All78] Allison B.N.: A class of nonassociative algebras with involution containing the class of Jordan algebras. Math. Ann. 237 (1978), 133–156. DOI 10.1007/BF01351677 | MR 0507909 | Zbl 0368.17001
[All79] Allison B.N.: Models of isotropic simple Lie algebras. Comm. Algebra 7 (1979), no. 17, 1835–1875. DOI 10.1080/00927877908822432 | MR 0547712 | Zbl 0422.17006
[All90] Allison B.N.: Simple structurable algebras of skew-dimension one. Comm. Algebra 18 (1990), no. 4, 1245–1279. DOI 10.1080/00927879008823963 | MR 1059949 | Zbl 0702.17002
[AF84] Allison B.N., Faulkner J.R.: A Cayley–Dickson process for a class of structurable algebras. Trans. Amer. Math. Soc. 283 (1984), no. 1, 185–210. DOI 10.1090/S0002-9947-1984-0735416-2 | MR 0735416 | Zbl 0543.17015
[AF92] Allison B.N., Faulkner J.R.: Norms on structurable algebras. Comm. Algebra 20 (1992), no. 1, 155–188. DOI 10.1080/00927879208824337 | MR 1145331 | Zbl 0753.17004
[AF93] Allison B.N., Faulkner J.R.: Nonassociative coefficient algebras for Steinberg unitary Lie algebras. J. Algebra 161 (1993), no. 1, 1–19. DOI 10.1006/jabr.1993.1202 | MR 1245840 | Zbl 0812.17002
[Bro63] Brown R.B.: A new type of nonassociative algebra. Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 947–949. DOI 10.1073/pnas.50.5.947 | MR 0158913
[DE13] Draper C., Elduque A.: Maximal finite abelian subgroups of $E_8$. arXiv:1312.4326.
[DV12] Draper C., Viruel A.: Fine gradings on $\mathfrak{e}_6$. arXiv:1207.6690.
[Eld13] Elduque A.: Fine gradings and gradings by root systems on simple Lie algebras. to appear in Rev. Mat. Iberoam.; arXiv:1303.0651.
[EK13] Elduque A., Kochetov M.: Gradings on simple Lie algebras. Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI, 2013. MR 3087174 | Zbl 1281.17001
[EO07] Elduque A., Okubo S.: Lie algebras with $S_4$-action and structurable algebras. J. Algebra 307 (2007), no. 2, 864–890. DOI 10.1016/j.jalgebra.2006.08.033 | MR 2275376 | Zbl 1172.17013
[Gar01] Garibaldi S.: Structurable Algebras and Groups of Type $E_6$ and $E_7$. J. Algebra 236 (2001), no. 2, 651–691. DOI 10.1006/jabr.2000.8514 | MR 1813495
[Jac68] Jacobson N.: Structure and representations of Jordan algebras. American Mathematical Society Colloquium Publications 39, American Mathematical Society, Providence, RI, 1968. MR 0251099 | Zbl 0218.17010
[McC69] McCrimmon K.: The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc. 139 (1969), 495–510. DOI 10.1090/S0002-9947-1969-0238916-9 | MR 0238916 | Zbl 0175.02703
[McC70] McCrimmon K.: The Freudenthal-Springer-Tits constructions revisited. Trans. Amer. Math. Soc. 148 (1970), 293–314. DOI 10.1090/S0002-9947-1970-0271181-3 | MR 0271181 | Zbl 0224.17013
[Smi92] Smirnov O.N.: Simple and semisimple structurable algebras. Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math. 131, Part 2, Amer. Math. Soc., Providence, RI, 1992, pp. 685–694. MR 1175866 | Zbl 0765.17003
Partner of
EuDML logo