Previous |  Up |  Next

Article

Keywords:
left loops; Cayley graphs; rate of growth; hyperbolicity
Summary:
In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups.
References:
[1] Baer R.: Nets and groups. Trans. Amer. Math. Soc. 46 (1939), 110–141. DOI 10.1090/S0002-9947-1939-0000035-5 | MR 0000035 | Zbl 0023.21502
[2] de la Harpe P.: Topics in geometric group theory. University of Chicago Press, Chicago, IL, 2000. MR 1786869 | Zbl 0965.20025
[3] Gauyaq G.: On quasi-Cayley graphs. Discrete Appl. Math. 77 (1997), 43–58. DOI 10.1016/S0166-218X(97)00098-X | MR 1460327
[4] Griggs T.S.: Graphs obtained from Moufang loops and regular maps. J. Graph Theory 70 (2012), 427–434. DOI 10.1002/jgt.20623 | MR 2957056 | Zbl 1247.05099
[5] Howie J.: Hyperbolic Groups. Lecture Notes. Heriot-Watt University.
[6] Mwambene E.: Characterization of regular graphs as loop graphs. Quaest. Math. 25 (2005), no. 2, 243–250. DOI 10.2989/16073600509486125 | MR 2146390
[7] Mwambene E.: Multiples of left loops and vertex-transitive graphs. Cent. Eur. J. Math. 3 (2005), no. 2, 254–250. DOI 10.2478/BF02479200 | MR 2129915 | Zbl 1117.05052
[8] Mwambene E.: Representing vertex-transitive graphs on groupoids. Quaest. Math. 29 (2009), 279–284. DOI 10.2989/16073600609486163 | MR 2259722 | Zbl 1107.05080
[9] Pflugfelder H.O.: Quasi-Groups and Loops: An Introduction. Heldermann, Berlin, 1990.
[10] Sabidussi G.: On a class of fixed-point-free graphs. Proc. Amer. Math. Soc. 9 (1958), no. 5, 800–804. DOI 10.1090/S0002-9939-1958-0097068-7 | MR 0097068 | Zbl 0091.37701
[11] Sabidussi G.: Vertex-transitive graphs. Monatsh. Math. 68 (1964), 426–438. DOI 10.1007/BF01304186 | MR 0175815 | Zbl 0136.44608
Partner of
EuDML logo