Previous |  Up |  Next

Article

Keywords:
dihedral automorphic loop; automorphic loop; inner mapping group; multiplication group; nucleus; commutant; center; commutator; associator subloop; derived subloop
Summary:
Automorphic loops are loops in which all inner mappings are automorphisms. We study a generalization of the dihedral construction for groups. Namely, if $(G,+)$ is an abelian group, $m\geq 1$ and $\alpha \in \operatorname{Aut}(G)$, let $\operatorname{Dih} (m,G,\alpha )$ be defined on $\mathbb Z_m\times G$ by \begin{equation*} (i,u)(j,v) = (i\oplus j,\,((-1)^{j}u + v)\alpha^{ij}). \end{equation*} The resulting loop is automorphic if and only if $m=2$ or ($\alpha^2=1$ and $m$ is even). The case $m=2$ was introduced by Kinyon, Kunen, Phillips, and Vojtěchovský. We present several structural results about the automorphic dihedral loops in both cases.
References:
[1] Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P.: The structure of automorphic loops. to appear in Transactions of the American Mathematical Society. MR 2302693
[2] Bruck R.H.: A Survey of Binary Systems. Springer, 1971. MR 0093552 | Zbl 0141.01401
[3] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms. Ann. of Math. 2 63 (1956), 308–323. DOI 10.2307/1969612 | MR 0076779 | Zbl 0074.01701
[4] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops. LMS J. Comut. Math. 14 (2011), 200–213. DOI 10.1112/S1461157010000173 | MR 2831230 | Zbl 1225.20052
[5] Jedlička P., Kinyon M.K., Vojtěchovský P.: The structure of commutative automorphic loops. Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. DOI 10.1090/S0002-9947-2010-05088-3 | MR 2719686 | Zbl 1215.20060
[6] Jedlička P., Kinyon M.K., Vojtěchovský P.: Constructions of commutative automorphic loops. Comm. Algebra 38 (2010), no. 9, 3243–3267. DOI 10.1080/00927870903200877 | MR 2724218 | Zbl 1209.20069
[7] Aboras M.: Dihedral-like constructions of automorphic loops. Thesis, in preparation.
Partner of
EuDML logo