Previous |  Up |  Next

Article

Keywords:
property $D$; meta-Lindelöf; weak $\overline{\theta}$-refinable; $P$-space; scattered space
Summary:
We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega_1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb D$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378--384] which states that every weak $\overline{\theta}$-refinable $\mathbb D$-scattered space is $D$.
References:
[1] Arhangel'skii A.V.: D-spaces and finite unions. Proc. Amer. Math. Soc. 132 (2004), 2163–2170. DOI 10.1090/S0002-9939-04-07336-8 | MR 2053991 | Zbl 1045.54009
[2] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and D-spaces. Comment. Math. Univ. Carolin. 43 (2002), 653–663. MR 2045787 | Zbl 1090.54017
[3] Barr M., Kennison J.F., Raphael R.: On productively Lindelöf spaces. Sci. Math. Jpn. 65 (2007), 319–332. MR 2328213 | Zbl 1146.54013
[4] Burke D.K.: Covering properties. in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. MR 0776628 | Zbl 0569.54022
[5] Buzyakova R.Z: On D-property of strong $\Sigma$-spaces. Comment. Math. Univ. Carolin. 43 (2002), 493–495. MR 1920524 | Zbl 1090.54018
[6] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces. Proc. Amer. Math. Soc. 125 (1997), 1237–1245. DOI 10.1090/S0002-9939-97-03902-6 | MR 1396999 | Zbl 0885.54023
[7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81 (1979), 371–377. DOI 10.2140/pjm.1979.81.371 | MR 0547605 | Zbl 0409.54011
[8] van Douwen E.K., Wicke H.H.: A real, weird topology on the reals. Houston J. Math. 3 (1977), 141–152. MR 0433414 | Zbl 0345.54036
[9] Fleissner W.G, Stanley A.M.: D-spaces. Topology Appl. 114 (2001), 261–271. DOI 10.1016/S0166-8641(00)00042-0 | MR 1838325 | Zbl 0983.54024
[10] Gillman L., Jerison M.: Rings of Continuous Functions. Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. MR 0407579 | Zbl 0327.46040
[11] Gruenhage G.: A survey of D-spaces. Contemporary Math. 533 (2011), 13–28. DOI 10.1090/conm/533/10502 | MR 2777743 | Zbl 1217.54025
[12] Martínez J. C., Soukup L.: The D-property in unions of scattered spaces. Topology Appl. 156 (2009), 3086-3090. DOI 10.1016/j.topol.2009.03.047 | MR 2556068 | Zbl 1178.54009
[13] Martínez J.C.: On finite unions and finite products with the D-property. Topology Appl. 158 (2011), 223–228. MR 2739893 | Zbl 1206.54022
[14] Mashburn J.D.: A note on irreducibility and weak covering properties. Topology Proc. 9 (1984), 339–352. MR 0828991 | Zbl 0577.54017
[15] Peng L.-X.: On finite unions of certain D-spaces. Topology Appl. 155 (2008), 522–526. DOI 10.1016/j.topol.2007.11.002 | MR 2388953 | Zbl 1143.54013
[16] Peng L.-X.: On spaces which are D, linearly D and transitively D. Topology Appl. 157 (2010), 378–384. MR 2563288 | Zbl 1179.54035
[17] Peng L.-X.: The D-property which relates to certain covering properties. Topology Appl. 159 (2012), 869–876. DOI 10.1016/j.topol.2011.12.004 | MR 2868887 | Zbl 1247.54033
[18] Smith J.C.: Properties of weak $\overline{\theta}$-refinable spaces. Proc. Amer. Math. Soc. 53 (1975), 511–517. MR 0380731 | Zbl 0338.54013
[19] Soukup D.T., Szeptycki P.J.: A counterexample in the theory of D-spaces. Topology Appl. 159 (2012), 2669–2678. DOI 10.1016/j.topol.2012.03.016 | MR 2923437
[20] Zhang H., Shi W.-X.: A note on D-spaces. Topology Appl. 159 (2012), 248–252. DOI 10.1016/j.topol.2011.09.006 | MR 2852969 | Zbl 1244.54058
Partner of
EuDML logo