[1] Bulíček M., Gwiazda P., Málek J., Świerczewska-Gwiazda A.:
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), no. 4, 2756–2801.
DOI 10.1137/110830289 |
MR 3023393 |
Zbl 1256.35074
[2] Dafermos C.M., Nohel J.A.:
A nonlinear hyperbolic Volterra equation in viscoelasticity. Contributions to analysis and geometry (Baltimore, Md., 1980), pp. 87–116, Johns Hopkins Univ. Press, Baltimore, Md., 1981.
MR 0648457 |
Zbl 0588.35016
[3] Gripenberg G., Londen S.O., Staffans O.:
Volterra integral and functional equations. Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990.
MR 1050319 |
Zbl 1159.45001
[4] Hrusa W.J.:
A nonlinear functional-differential equation in Banach space with applications to materials with fading memory. Arch. Rational Mech. Anal. 84 (1984), no. 2, 99–137.
DOI 10.1007/BF00252129 |
MR 0713121 |
Zbl 0544.73056
[7] MacCamy R.C.:
A model for one-dimensional nonlinear viscoelasticity. Quart. Appl. Math. 37 (1977), 21–33.
MR 0478939 |
Zbl 0355.73041
[8] Málek J.:
Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008), 110–125.
MR 2569596 |
Zbl 1182.35182
[10] Muliana A., Rajagopal K.R., Wineman A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mechanica (2013), 1–15.
[11] Průša V., Rajagopal K.R.:
On implicit constitutive relations for materials with fading memory. Journal of Non-Newtonian Fluid Mechanics 181-182 (2012), 22–29.
DOI 10.1016/j.jnnfm.2012.06.004
[13] Renardy M., Hrusa W.J., Nohel J.A.:
Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.
MR 0919738 |
Zbl 0719.73013