Previous |  Up |  Next

Article

Keywords:
difference equation; forbidden set; periodic solution; unbounded solution
Summary:
In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation $$x_{n+1}=\frac {ax_{n}x_{n-1}}{-bx_{n}+ cx_{n-2}},\quad n\in \mathbb {N}_0 $$ where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with ${(a-c)}/{b}<1$. \endgraf When $a>c$ with ${(a-c)}/{b}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities. Theory, Methods, and Applications. Pure and Applied Mathematics 155 Marcel Dekker, New York (1992). MR 1155840 | Zbl 0925.39001
[2] Aloqeili, M.: Dynamics of a rational difference equation. Appl. Math. Comput. 176 (2006), 768-774. DOI 10.1016/j.amc.2005.10.024 | MR 2232069 | Zbl 1100.39002
[3] Andruch-Sobiło, A., Migda, M.: Further properties of the rational recursive sequence $x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}$. Opusc. Math. 26 (2006), 387-394. MR 2280266 | Zbl 1131.39003
[4] Andruch-Sobiło, A., Migda, M.: On the rational recursive sequence $x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}$. Tatra Mt. Math. Publ. 43 (2009), 1-9. MR 2588871
[5] Berg, L., Stević, S.: On difference equations with powers as solutions and their connection with invariant curves. Appl. Math. Comput. 217 (2011), 7191-7196. DOI 10.1016/j.amc.2011.02.005 | MR 2781112 | Zbl 1260.39002
[6] Berg, L., Stević, S.: On some systems of difference equations. Appl. Math. Comput. 218 (2011), 1713-1718. DOI 10.1016/j.amc.2011.06.050 | MR 2831394 | Zbl 1243.39009
[7] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete Mathematics and Applications 5 Chapman and Hall/HRC, Boca Raton (2008). MR 2363297 | Zbl 1129.39002
[8] Grove, E. A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Advances in Discrete Mathematics and Applications 4 Chapman and Hall/CRC, Boca Raton (2005). MR 2193366 | Zbl 1078.39009
[9] Iričanin, B., Stević, S.: On some rational difference equations. Ars Comb. 92 (2009), 67-72. MR 2532566 | Zbl 1224.39014
[10] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (1993), 289-294. MR 1259169 | Zbl 0868.39002
[11] Kocić, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and Its Applications 256 Kluwer Academic Publishers, Dordrecht (1993). MR 1247956
[12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235 (1999), 151-158. DOI 10.1006/jmaa.1999.6384 | MR 1758674 | Zbl 0933.37016
[13] Kulenović, M. R. S., Ladas, G.: Dynamics of Second Order Rational Difference Equations. With Open Problems and Conjectures Chapman and Hall/HRC, Boca Raton (2002). MR 1935074 | Zbl 0981.39011
[14] Levy, H., Lessman, F.: Finite Difference Equations. Reprint of the 1961 edition. Dover Publications New York (1992). MR 1217083
[15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl. 15 (2009), 215-224. DOI 10.1080/10236190802054126 | MR 2498770 | Zbl 1169.39006
[16] Stević, S.: On a system of difference equations. Appl. Math. Comput. 218 (2011), 3372-3378. DOI 10.1016/j.amc.2011.08.079 | MR 2851439 | Zbl 1256.39008
[17] Stević, S.: On a system of difference equations with period two coefficients. Appl. Math. Comput. 218 (2011), 4317-4324. DOI 10.1016/j.amc.2011.10.005 | MR 2862101 | Zbl 1256.39008
[18] Stević, S.: On a third-order system of difference equations. Appl. Math. Comput. 218 (2012), 7649-7654. DOI 10.1016/j.amc.2012.01.034 | MR 2892731 | Zbl 1242.39011
[19] Stević, S.: On the difference equation $x_n=x_{n-2}/(b_n+c_nx_{n-1}x_{n-2})$. Appl. Math. Comput. 218 (2011), 4507-4513. MR 2862122
[20] Stević, S.: On some solvable systems of difference equations. Appl. Math. Comput. 218 (2012), 5010-5018. DOI 10.1016/j.amc.2011.10.068 | MR 2870025 | Zbl 1253.39011
[21] Stević, S.: On positive solutions of a $(k +1)$th order difference equation. Appl. Math. Lett. 19 (2006), 427-431. DOI 10.1016/j.aml.2005.05.014 | MR 2213143 | Zbl 1095.39010
[22] Stević, S.: More on a rational recurrence relation. Appl. Math. E-Notes (electronic only) 4 (2004), 80-85. MR 2077785 | Zbl 1069.39024
Partner of
EuDML logo