Previous |  Up |  Next

Article

Keywords:
return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability
Summary:
We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.
References:
[1] Appelbe, B., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Physica B 403 (2008), 301-304. DOI 10.1016/j.physb.2007.08.034
[2] Appelbe, B., Flynn, D., McNamara, H., O'Kane, J. P., Pimenov, A., Pokrovskii, A., Rachinskii, D., Zhezherun, A.: Rate-independent hysteresis in terrestrial hydrology. IEEE Control Syst. Mag. 29 (2009), 44-69. DOI 10.1109/MCS.2008.930923
[3] Balanov, Z., Krawcewicz, W., Rachinskii, D., Zhezherun, A.: Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis. J. Dyn. Differ. Equations 24 (2012), 713-759. DOI 10.1007/s10884-012-9271-4 | MR 3000601 | Zbl 1264.34093
[4] Bessoud, A.-L., Stefanelli, U.: Magnetic shape memory alloys: three-dimensional modeling and analysis. Math. Models Methods Appl. Sci. 21 (2011), 1043-1069. DOI 10.1142/S0218202511005246 | MR 2804528
[5] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121 Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8_5 | MR 1411908 | Zbl 0951.74002
[6] Brokate, M., Pokrovskii, A. V., Rachinskii, D., Rasskazov, O.: Differential equations with hysteresis via a canonical example. G. Bertotti et al. The Science of Hysteresis. Vol. I Mathematical modeling and applications Elsevier, Academic Press, Amsterdam (2006), 125-291. Zbl 1142.34026
[7] Brokate, M., Pokrovskii, A., Rachinskii, D.: Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis. J. Math. Anal. Appl. 319 (2006), 94-109. DOI 10.1016/j.jmaa.2006.02.060 | MR 2217849 | Zbl 1111.34035
[8] Brokate, M., MacCarthy, S., Pimenov, A., Pokrovskii, A., Rachinskii, D.: Modelling energy dissipation due to soil-moisture hysteresis. Environ Model Assess 16 (2011), 313-333. DOI 10.1007/s10666-011-9258-2
[9] Cagnol, J., Miara, B., Mielke, A., Stavroulakis, G.: State of the Art, Trends, and Directions in Smart Systems. www.wias-berlin.de/people/mielke/papers/stateoftheart.pdf.
[10] Cellai, D., Lawlor, A., Dawson, K. A., Gleeson, J. P.: Tricritical point in heterogeneous k-core percolation. Phys. Rev. Lett. 107 (2011), no. 175703, 5 pages. DOI 10.1103/PhysRevLett.107.175703
[11] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.: A new paradigm for modelling hysteresis in macroeconomic flows. Physica B 403 (2008), 231-236. DOI 10.1016/j.physb.2007.08.017
[12] Cross, R., McNamara, H., Pokrovskii, A.: Modelling macroeconomic flows related to large ensembles of elementary exchange operations. Physica B 403 (2008), 451-455. DOI 10.1016/j.physb.2007.08.073
[13] Cross, R., McNamara, H., Pokrovskii, A.: Memory of recessions. Strathclyde discussion papers in economics no. 10-09, 26 pages (2010).
[14] Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A.: Hysteresis in the fundamentals of macroeconomics. Strathclyde discussion papers in economics no. 10-08, 35 pages (2010).
[15] Cross, R.: On the foundations of hysteresis in economic systems. Economics and Philosophy 9 (1993), 53-74. DOI 10.1017/S0266267100005113
[16] Cross, R., Grinfeld, M., Lamba, H.: Hysteresis and economics. IEEE Control Syst. Mag. 29 (2009), 30-43. DOI 10.1109/MCS.2008.930445 | MR 2477927
[17] Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A.: Hysteresis and post Walrasian economics. Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 377-401. DOI 10.3934/dcdsb.2013.18.377 | MR 2999082 | Zbl 1268.91121
[18] Dahmen, K., Ben-Zion, Y.: Jerky motion in slowly driven magnetic and earthquake fault systems, physics of. C. Marchetti, R. A. Meyers Encyclopedia of Complexity and Systems Science Springer (2009), 5021-5037.
[19] Davino, D., Giustiniani, A., Visone, C.: Compensation and control of two-inputs systems with hysteresis. J. Phys.: Conf. Ser. 268 (2011), no. 12005, 16 pages.
[20] Diamond, P., Rachinskii, D., Yumagulov, M.: Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity. Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. MR 1780452 | Zbl 0963.34034
[21] Diamond, P., Kuznetsov, N., Rachinskii, D.: On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity. J. Differ. Equations 175 (2001), 1-26. DOI 10.1006/jdeq.2000.3916 | MR 1849221 | Zbl 0984.34029
[22] Ekanayake, D., Iyer, R. V.: Asymptotic behavior of a low dimensional model for magnetostriction for periodic inputs. Physica B: Physics of Condensed Matter 403 (2008), 257-260. DOI 10.1016/j.physb.2007.08.023
[23] Eleuteri, M., Lussardi, L., Stefanelli, U.: A rate-independent model for permanent inelastic effects in shape memory materials. Netw. Heterog. Media (electronic only) 6 (2011), 145-165. DOI 10.3934/nhm.2011.6.145 | MR 2777014 | Zbl 1263.74016
[24] Eleuteri, M., Kopfová, J., Krejčí, P.: Magnetohydrodynamic flow with hysteresis. SIAM J. Math. Anal. 41 (2009), 435-464. DOI 10.1137/080718383 | MR 2507458
[25] Flynn, D., McNamara, H., O'Kane, J. P., Pokrovskii, A.: Application of the Preisach model to soil-moisture hysteresis. G. Bertottiand, I. D. Mayergoyz The Science of Hysteresis Vol. III Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006), 689-744. DOI 10.1016/B978-012480874-4/50025-7 | Zbl 1136.76048
[26] Flynn, D., Zhezherun, A., Pokrovskii, A., O'Kane, J. P.: Modeling discontinuous flow through porous media using ODEs with Preisach operator. Physica B 403 (2008), 440-442. DOI 10.1016/j.physb.2007.08.070
[27] Gleeson, J. P.: High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107 (2011), no. 068701, 9 pages. DOI 10.1103/PhysRevLett.107.068701
[28] Göcke, M.: Various concepts of hysteresis applied in economics. Journal of Economic Surveys 16 (2002), 167-188. DOI 10.1111/1467-6419.00163
[29] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet: Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98 (2007), no. 153903, 4 pages. DOI 10.1103/PhysRevLett.98.153903
[30] (ed.), A. Ivanyi: Preisach Memorial Book. Akademiai Kiado Budapest (2005).
[31] Iyer, R. V., Tan, X., Krishnaprasad, P. S.: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Automat. Control 50 (2005), 798-810. DOI 10.1109/TAC.2005.849205 | MR 2141996
[32] Jayawardhana, B., Logemann, H., Ryan, E. P.: Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun. Inf. Syst. 8 (2008), 413-444. MR 2495748 | Zbl 1168.93021
[33] Krasnosel'skii, A. M., Rachinskii, D.: On a bifurcation governed by hysteresis nonlinearity. NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 93-115. DOI 10.1007/s00030-002-8120-2 | MR 1891697 | Zbl 1013.34036
[34] Krasnosel'skii, M., Pokrovskii, A.: Systems with Hysteresis. Translated from the Russian by Marek Niezgódka Springer, Berlin (1989). MR 0987431 | Zbl 0665.47038
[35] Krauskopf, B., Schneider, K. R., Sieber, J., Wieczorek, S. M., Wolfrum, M.: Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems. Optics Communications 215 (2003), 367-379. DOI 10.1016/S0030-4018(02)02239-3
[36] Krejčí, P.: On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case. Apl. Mat. 34 (1989), 364-374. MR 1014077 | Zbl 0701.35098
[37] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Mathematical models of hydrological systems with Preisach hysteresis. Physica D 241 (2012), 2010-2028. MR 2994340
[38] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Stability results for a soil model with singular hysteretic hydrology. J. Phys.: Conf. Ser. 268 (2011), no. 012016, 19 pages.
[39] Krejčí, P.: Resonance in Preisach systems. Appl. Math., Praha 45 (2000), 439-468. DOI 10.1023/A:1022333500777 | MR 1800964 | Zbl 1010.34038
[40] Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrical actuated systems---a new Preisach modeling approach. IEEE Trans. Automat. Control 54 (2009), 537-550. DOI 10.1109/TAC.2009.2012984 | MR 2191546
[41] Lamba, H., Grinfeld, M., McKee, S., Simpson, R.: Subharmonic ferroresonance in an LCR circuit with hysteresis. IEEE Transactions on Magnetics 33 (1997), 2495-2500. DOI 10.1109/20.595906
[42] Lamba, H., McKee, S., Simpson, R.: The effect of circuit parameters on ferroresonant solutions in an LCR circuit. J. Phys. A, Math. Gen. 31 (1998), 7065-7076. DOI 10.1088/0305-4470/31/34/010 | Zbl 1041.94552
[43] Mayergoyz, I. D.: Mathematical Models of Hysteresis. Springer, New York (1991). MR 1083150 | Zbl 0723.73003
[44] Mayergoyz, I. D., (eds.), G. Bertotti: The Science of Hysteresis. Vol. III. Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006). MR 2307931 | Zbl 1117.34047
[45] McCarthy, S., Rachinskii, D.: Attempts at a numerical realisation of stochastic differential equations containing Preisach operator. J. Phys.: Conf. Ser. 268 (2011), no. 012019, 15 pages.
[46] O'Kane, J. P.: The hysteretic linear reservoir---a new Preisach model. Physica B: Condensed Matter 372 (2006), 388-392. DOI 10.1016/j.physb.2005.10.090
[47] O'Kane, J. P.: Hysteresis in hydrology. Acta Geophys. Pol. 53 (2005), 373-383.
[48] O'Kane, J. P.: The FEST model-a test bed for hysteresis in hydrology and soil physics. J. Phys.: Conf. Ser. 22 (2005), 148-163.
[49] O'Kane, J. P., Pokrovskii, A., Krejčí, P., Haverkamp, R.: Hysteresis and terrestrial hydrology. EGS-AGU-EUG Joint Assembly 1 (2003), 6154.
[50] Pimenov, A., Rachinskii, D.: Linear stability analysis of systems with Preisach memory. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 997-1018. DOI 10.3934/dcdsb.2009.11.997 | MR 2505656 | Zbl 1181.47075
[51] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J. A., Pokrovskii, A., Rachinskii, D.: Memory effects in population dynamics: spread of infectious disease as a case study. Math. Model. Nat. Phenom. 7 (2012), 1-30. DOI 10.1051/mmnp/20127313 | MR 2928740
[52] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A.: Systems with hysteresis in mathematical biology via a canonical example. Mathematical Modeling, Clustering Algorithms and Applications C. L. Wilson Nova Science Publishers (2010).
[53] Sander, G. S., Glidewell, O. J., Norbury, J.: Dynamic capillary pressure, hysteresis and gravity-driven fingering in porous media. J. Phys.: Conf. Ser. 138 (2008), no. 012023, 14 pages.
[54] Sethna, J. P., Dahmen, K. A., Perković, O.: Random-field Ising models of hysteresis. The science of Hysteresis Vol. II Physical modeling, micromagnetics, and magnetization dynamics G. Bertotti, I. Mayergoyz Elsevier, Academic Press, Amsterdam (2006), 107-179. MR 2307930 | Zbl 1148.82018
[55] Spanos, P.D., Cacciola, P., Muscolino, G.: Stochastic averaging of Preisach hysteretic systems. J. Eng. Mech. 130 (2004), 1257-1267. DOI 10.1061/(ASCE)0733-9399(2004)130:11(1257)
[56] Rachinskii, D.: Asymptotic stability of large-amplitude oscillations in systems with hysteresis. NoDEA, Nonlinear Differ. Equ. Appl. 6 (1999), 267-288. DOI 10.1007/s000300050076 | MR 1710574 | Zbl 0938.34036
[57] Rezaei-Zare, A., Sanaye-Pasand, M., Mohseni, H., Farhangi, S., Iravani, R.: Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance. IEEE Trans. Power Deliv. 22 (2007), 919-929. DOI 10.1109/TPWRD.2006.877078
[58] Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences 111 Springer, Berlin (1994). DOI 10.1007/978-3-662-11557-2 | MR 1329094 | Zbl 0820.35004
[59] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys.: Conf. Ser. 138 (2008), no. 012028, 24 pages.
[60] Wang, Y., Ying, Z. G., Zhu, W. Q.: Nonlinear stochastic optimal control of Preisach hysteretic systems. Probabilistic Engineering Mechanics 24 (2009), 255-264. DOI 10.1016/j.probengmech.2008.07.003
Partner of
EuDML logo