[1] Appelbe, B., Rachinskii, D., Zhezherun, A.:
Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Physica B 403 (2008), 301-304.
DOI 10.1016/j.physb.2007.08.034
[2] Appelbe, B., Flynn, D., McNamara, H., O'Kane, J. P., Pimenov, A., Pokrovskii, A., Rachinskii, D., Zhezherun, A.:
Rate-independent hysteresis in terrestrial hydrology. IEEE Control Syst. Mag. 29 (2009), 44-69.
DOI 10.1109/MCS.2008.930923
[4] Bessoud, A.-L., Stefanelli, U.:
Magnetic shape memory alloys: three-dimensional modeling and analysis. Math. Models Methods Appl. Sci. 21 (2011), 1043-1069.
DOI 10.1142/S0218202511005246 |
MR 2804528
[6] Brokate, M., Pokrovskii, A. V., Rachinskii, D., Rasskazov, O.:
Differential equations with hysteresis via a canonical example. G. Bertotti et al. The Science of Hysteresis. Vol. I Mathematical modeling and applications Elsevier, Academic Press, Amsterdam (2006), 125-291.
Zbl 1142.34026
[8] Brokate, M., MacCarthy, S., Pimenov, A., Pokrovskii, A., Rachinskii, D.:
Modelling energy dissipation due to soil-moisture hysteresis. Environ Model Assess 16 (2011), 313-333.
DOI 10.1007/s10666-011-9258-2
[9] Cagnol, J., Miara, B., Mielke, A., Stavroulakis, G.: State of the Art, Trends, and Directions in Smart Systems. www.wias-berlin.de/people/mielke/papers/stateoftheart.pdf.
[10] Cellai, D., Lawlor, A., Dawson, K. A., Gleeson, J. P.:
Tricritical point in heterogeneous k-core percolation. Phys. Rev. Lett. 107 (2011), no. 175703, 5 pages.
DOI 10.1103/PhysRevLett.107.175703
[11] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.:
A new paradigm for modelling hysteresis in macroeconomic flows. Physica B 403 (2008), 231-236.
DOI 10.1016/j.physb.2007.08.017
[12] Cross, R., McNamara, H., Pokrovskii, A.:
Modelling macroeconomic flows related to large ensembles of elementary exchange operations. Physica B 403 (2008), 451-455.
DOI 10.1016/j.physb.2007.08.073
[13] Cross, R., McNamara, H., Pokrovskii, A.: Memory of recessions. Strathclyde discussion papers in economics no. 10-09, 26 pages (2010).
[14] Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A.: Hysteresis in the fundamentals of macroeconomics. Strathclyde discussion papers in economics no. 10-08, 35 pages (2010).
[18] Dahmen, K., Ben-Zion, Y.: Jerky motion in slowly driven magnetic and earthquake fault systems, physics of. C. Marchetti, R. A. Meyers Encyclopedia of Complexity and Systems Science Springer (2009), 5021-5037.
[19] Davino, D., Giustiniani, A., Visone, C.: Compensation and control of two-inputs systems with hysteresis. J. Phys.: Conf. Ser. 268 (2011), no. 12005, 16 pages.
[20] Diamond, P., Rachinskii, D., Yumagulov, M.:
Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity. Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031.
MR 1780452 |
Zbl 0963.34034
[21] Diamond, P., Kuznetsov, N., Rachinskii, D.:
On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity. J. Differ. Equations 175 (2001), 1-26.
DOI 10.1006/jdeq.2000.3916 |
MR 1849221 |
Zbl 0984.34029
[22] Ekanayake, D., Iyer, R. V.:
Asymptotic behavior of a low dimensional model for magnetostriction for periodic inputs. Physica B: Physics of Condensed Matter 403 (2008), 257-260.
DOI 10.1016/j.physb.2007.08.023
[24] Eleuteri, M., Kopfová, J., Krejčí, P.:
Magnetohydrodynamic flow with hysteresis. SIAM J. Math. Anal. 41 (2009), 435-464.
DOI 10.1137/080718383 |
MR 2507458
[25] Flynn, D., McNamara, H., O'Kane, J. P., Pokrovskii, A.:
Application of the Preisach model to soil-moisture hysteresis. G. Bertottiand, I. D. Mayergoyz The Science of Hysteresis Vol. III Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006), 689-744.
DOI 10.1016/B978-012480874-4/50025-7 |
Zbl 1136.76048
[26] Flynn, D., Zhezherun, A., Pokrovskii, A., O'Kane, J. P.:
Modeling discontinuous flow through porous media using ODEs with Preisach operator. Physica B 403 (2008), 440-442.
DOI 10.1016/j.physb.2007.08.070
[27] Gleeson, J. P.:
High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107 (2011), no. 068701, 9 pages.
DOI 10.1103/PhysRevLett.107.068701
[28] Göcke, M.:
Various concepts of hysteresis applied in economics. Journal of Economic Surveys 16 (2002), 167-188.
DOI 10.1111/1467-6419.00163
[29] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet:
Excitability in a quantum dot semiconductor laser with optical injection. Phys. Rev. Lett. 98 (2007), no. 153903, 4 pages.
DOI 10.1103/PhysRevLett.98.153903
[30] (ed.), A. Ivanyi: Preisach Memorial Book. Akademiai Kiado Budapest (2005).
[31] Iyer, R. V., Tan, X., Krishnaprasad, P. S.:
Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Automat. Control 50 (2005), 798-810.
DOI 10.1109/TAC.2005.849205 |
MR 2141996
[32] Jayawardhana, B., Logemann, H., Ryan, E. P.:
Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun. Inf. Syst. 8 (2008), 413-444.
MR 2495748 |
Zbl 1168.93021
[34] Krasnosel'skii, M., Pokrovskii, A.:
Systems with Hysteresis. Translated from the Russian by Marek Niezgódka Springer, Berlin (1989).
MR 0987431 |
Zbl 0665.47038
[35] Krauskopf, B., Schneider, K. R., Sieber, J., Wieczorek, S. M., Wolfrum, M.:
Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems. Optics Communications 215 (2003), 367-379.
DOI 10.1016/S0030-4018(02)02239-3
[36] Krejčí, P.:
On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case. Apl. Mat. 34 (1989), 364-374.
MR 1014077 |
Zbl 0701.35098
[37] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.:
Mathematical models of hydrological systems with Preisach hysteresis. Physica D 241 (2012), 2010-2028.
MR 2994340
[38] Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D.: Stability results for a soil model with singular hysteretic hydrology. J. Phys.: Conf. Ser. 268 (2011), no. 012016, 19 pages.
[40] Kuhnen, K., Krejčí, P.:
Compensation of complex hysteresis and creep effects in piezoelectrical actuated systems---a new Preisach modeling approach. IEEE Trans. Automat. Control 54 (2009), 537-550.
DOI 10.1109/TAC.2009.2012984 |
MR 2191546
[41] Lamba, H., Grinfeld, M., McKee, S., Simpson, R.:
Subharmonic ferroresonance in an LCR circuit with hysteresis. IEEE Transactions on Magnetics 33 (1997), 2495-2500.
DOI 10.1109/20.595906
[44] Mayergoyz, I. D., (eds.), G. Bertotti:
The Science of Hysteresis. Vol. III. Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006).
MR 2307931 |
Zbl 1117.34047
[45] McCarthy, S., Rachinskii, D.: Attempts at a numerical realisation of stochastic differential equations containing Preisach operator. J. Phys.: Conf. Ser. 268 (2011), no. 012019, 15 pages.
[46] O'Kane, J. P.:
The hysteretic linear reservoir---a new Preisach model. Physica B: Condensed Matter 372 (2006), 388-392.
DOI 10.1016/j.physb.2005.10.090
[47] O'Kane, J. P.: Hysteresis in hydrology. Acta Geophys. Pol. 53 (2005), 373-383.
[48] O'Kane, J. P.: The FEST model-a test bed for hysteresis in hydrology and soil physics. J. Phys.: Conf. Ser. 22 (2005), 148-163.
[49] O'Kane, J. P., Pokrovskii, A., Krejčí, P., Haverkamp, R.: Hysteresis and terrestrial hydrology. EGS-AGU-EUG Joint Assembly 1 (2003), 6154.
[51] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J. A., Pokrovskii, A., Rachinskii, D.:
Memory effects in population dynamics: spread of infectious disease as a case study. Math. Model. Nat. Phenom. 7 (2012), 1-30.
DOI 10.1051/mmnp/20127313 |
MR 2928740
[52] Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A.: Systems with hysteresis in mathematical biology via a canonical example. Mathematical Modeling, Clustering Algorithms and Applications C. L. Wilson Nova Science Publishers (2010).
[53] Sander, G. S., Glidewell, O. J., Norbury, J.: Dynamic capillary pressure, hysteresis and gravity-driven fingering in porous media. J. Phys.: Conf. Ser. 138 (2008), no. 012023, 14 pages.
[54] Sethna, J. P., Dahmen, K. A., Perković, O.:
Random-field Ising models of hysteresis. The science of Hysteresis Vol. II Physical modeling, micromagnetics, and magnetization dynamics G. Bertotti, I. Mayergoyz Elsevier, Academic Press, Amsterdam (2006), 107-179.
MR 2307930 |
Zbl 1148.82018
[57] Rezaei-Zare, A., Sanaye-Pasand, M., Mohseni, H., Farhangi, S., Iravani, R.:
Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance. IEEE Trans. Power Deliv. 22 (2007), 919-929.
DOI 10.1109/TPWRD.2006.877078
[59] Visone, C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys.: Conf. Ser. 138 (2008), no. 012028, 24 pages.
[60] Wang, Y., Ying, Z. G., Zhu, W. Q.:
Nonlinear stochastic optimal control of Preisach hysteretic systems. Probabilistic Engineering Mechanics 24 (2009), 255-264.
DOI 10.1016/j.probengmech.2008.07.003