[1] Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R.:
On the metric dimension of Cartesian products of graphs. SIAM J. Discrete Math. (electronic) 21 (2007), 423-441.
DOI 10.1137/050641867 |
MR 2318676 |
Zbl 1139.05314
[4] Chartrand, G., Zhang, P.:
The theory and applications of resolvability in graphs (A survey). Congr. Numerantium 160 (2003), 47-68.
MR 2049102 |
Zbl 1039.05029
[5] Harary, F., Melter, R. A.:
On the metric dimension of a graph. Ars Comb. 2 (1976), 191-195.
MR 0457289 |
Zbl 0349.05118
[6] Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Cáceres, J., Puertas, M. L.:
On the metric dimension of some families of graphs. Raspaud, André et al. 7th International Colloquium on Graph Theory, Hyeres, France, September 12-16, 2005 Elsevier, Amsterdam, Electronic Notes in Discrete Mathematics 22 (2005), 129-133.
DOI 10.1016/j.endm.2005.06.023 |
MR 2521989 |
Zbl 1182.05050
[7] Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R.:
Extremal graph theory for metric dimension and diameter. Electron. J. Comb. 17 (2010), Research paper R30, 28 pages.
MR 2595490 |
Zbl 1219.05051
[10] Slater, P. J.:
Leaves of trees. Proc. 6th Southeast. Conf. Comb., Graph Theor., Comput Florida, Boca Raton (1975), 549-559.
MR 0422062 |
Zbl 0316.05102
[11] Sudhakara, G., Kumar, A. R. Hemanth:
Graphs with metric dimension two---a characterization. Adv. Appl. Discrete Math. 4 (2009), 169-186.
MR 2590304