Previous |  Up |  Next

Article

Keywords:
$f$-harmonic morphisms; $f$-harmonic maps; horizontally weakly conformal map
Summary:
In this paper, we study the characterization of generalized $f$-harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an $f$-harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107--144], [Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215--229]).
References:
[1] Ara M.: Geometry of $F$-harmonic maps. Kodai Math. J. 22 (1999), no. 2, 243–263. DOI 10.2996/kmj/1138044045 | MR 1700595 | Zbl 0941.58010
[2] Baird P., Wood J.C.: Harmonic Morphisms between Riemannain Manifolds. Clarendon Press, Oxford, 2003. MR 2044031
[3] Course N.: f-harmonic maps which map the boundary of the domain to one point in the target. New York J. Math. 13 (2007), 423–435 (electronic). MR 2357720 | Zbl 1202.58012
[4] Djaa M., Cherif A.M., Zegga K., Ouakkas S.: On the generalized of harmonic and bi-harmonic maps. Int. Electron. J. Geom. 5 (2012), no. 1, 90–100. MR 2915490
[5] Mustapha D., Cherif A.M.: On the generalized $f$-biharmonic maps and stress $f$-bienergy tensor. Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81. MR 3113559
[6] Fuglede B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144. DOI 10.5802/aif.691 | MR 0499588 | Zbl 0408.31011
[7] Gudmundsson S.: The geometry of harmonic morphisms. University of Leeds, Department of Pure Mathematics, April 1992. Zbl 0715.53029
[8] Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. MR 0545705 | Zbl 0421.31006
[9] Lichnerowicz A.: Applications harmoniques et variétés Kähleriennes. 1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London. MR 0262993 | Zbl 0193.50101
[10] Ou Y.L.: On $f$-harmonic morphisms between Riemannian manifolds. arxiv:1103.5687, Chinese Ann. Math., series B(to appear).
[11] Ouakkas S., Nasri R., Djaa M.: On the f-harmonic and f-biharmonic maps. JP J. Geom. Topol. 10 (2010), no. 1, 11–27. MR 2677559 | Zbl 1209.58014
Partner of
EuDML logo