Previous |  Up |  Next

Article

Keywords:
small module; self-injectivity; von Neumann regular ring; purely infinite rings; direct sums; direct products; strongly inaccessible cardinals
Summary:
Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.
References:
[1] Eklof P.C., Goodearl K.R., Trlifaj J.: Dually slender modules and steady rings. Forum Math. 9 (1997), 61–74. DOI 10.1515/form.1997.9.61 | MR 1426454 | Zbl 0866.16003
[2] El Bashir R., Kepka T., Němec P.: Modules commuting (via Hom) with some colimits. Czechoslovak Math. J. 53 (2003), 891–905. DOI 10.1023/B:CMAJ.0000024528.13249.45 | MR 2018837 | Zbl 1080.16504
[3] Goodearl K.R.: Von Neumann Regular Rings. Pitman, London, 1979, Second Ed. Melbourne, FL 1991, Krieger. MR 0533669 | Zbl 0841.16008
[4] Kunen K.: Set Theory: An Introduction to Independence Proofs. North Holland, Amsterdam, 1980. MR 0597342 | Zbl 0534.03026
[5] Rentschler R.: Sur les modules $M$ tels que $Hom(M,-)$ commute avec les sommes directes. C.R. Acad. Sci. Paris 268 (1969), 930–933. MR 0241466 | Zbl 0179.06102
[6] Růžička P., Trlifaj J., Žemlička J.: Criteria of steadiness. Abelian Groups, Module Theory, and Topology, Marcel Dekker, New York, 1998, pp. 359–372. MR 1651181 | Zbl 0917.16004
[7] Stenström B.: Rings of Quotients. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217, Springer, New York-Heidelberg, 1975. MR 0389953
[8] Trlifaj J.: Almost $\ast$-modules need not be finitely generated. Comm. Algebra 21 (1993), 2453–2462. DOI 10.1080/00927879308824686 | MR 1218507
[9] Trlifaj J.: Steady rings may contain large sets of orthogonal idempotents. Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, pp. 467–473. MR 1378220 | Zbl 0845.16009
[10] Zelenyuk E.G.: Ultrafilters and topologies on groups. de Gruyter Expositions in Mathematics, 50, de Gruyter, Berlin, 2011. MR 2768144 | Zbl 1215.22001
[11] Žemlička J.: Steadiness is tested by a single module. Contemporary Mathematics 273 (2001), 301–308. DOI 10.1090/conm/273/04444 | MR 1817172 | Zbl 0988.16003
[12] Žemlička J.: Classes of dually slender modules. Proceedings of the Algebra Symposium, Cluj, 2005, Editura Efes, Cluj-Napoca, 2006, pp. 129–137. MR 2338602 | Zbl 1152.16004
[13] Žemlička J., and Trlifaj J.: Steady ideals and rings. Rend. Sem. Mat. Univ. Padova 98 (1997), 161–172. MR 1492975
Partner of
EuDML logo