Previous |  Up |  Next

Article

Keywords:
convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators
Summary:
The present article studies the conditions under which the almost everywhere convergence and the convergence in measure coincide. An application in the statistical estimation theory is outlined as well.
References:
[1] Asanov M.O., Veličko N.V.: Kompaktnye množestva v $C_p(X)$. Comment. Math. Univ. Carolinae 22 (1981), 255–266.
[2] Blackwell D.: There are no Borel SPLIFs. Ann. Probability 8 (1980), 1189–1190. DOI 10.1214/aop/1176994581 | MR 0602393 | Zbl 0451.28001
[3] Dunford N., Schwartz J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, Inc., New Jersey, 1988. MR 1009162 | Zbl 0635.47001
[4] Fremlin D.H.: Measure Theory, Vol 4, Topological Measure Spaces. Colchester: Torres Fremlin, 2003. MR 2462372 | Zbl 1166.28001
[5] Ionescu Tulcea A.: On pointwise convergence, compactness and equicontinuity I. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 26 (1973), 197–205. DOI 10.1007/BF00532722 | MR 0405102
[6] Ionescu Tulcea A.: On pointwise convergence, compactness and equicontinuity II. Advances in Math. 12 (1974), 171–177. DOI 10.1016/S0001-8708(74)80002-2 | MR 0405103 | Zbl 0301.46032
[7] Kelley J.L.: General Topology. Springer, New York, 1975. MR 0370454 | Zbl 0518.54001
[8] Kříž P.: How to construct Borel measurable PLIFs?. WDS'11 Proc. of Contr. Papers, Part I, (2011), 43–48.
[9] Štěpán J.: The probability limit identification function exists under the continuum hypothesis. Ann. Probability 1 (1973), 712–715. DOI 10.1214/aop/1176996899 | MR 0356196 | Zbl 0263.60013
Partner of
EuDML logo