Previous |  Up |  Next

Article

Keywords:
FP-ring; direct product; homomorphic image; amalgamation of rings; $A\bowtie^{f}J $; trivial extension
Summary:
In this paper, we study the class of rings in which every flat ideal is projective. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.
References:
[1] Ali M.M.: Idealization and Theorems of D.D. Anderson II. Comm. Algebra 35 (2007), 2767–2792. DOI 10.1080/00927870701353852 | MR 2356298 | Zbl 1136.13007
[2] Anderson D.D., Winders M.: Idealization of a module. J. Commut. Algebra 1 (2009), no. 1, 3–56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[3] Bakkari C., Kabbaj S., Mahdou N.: Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214 (2010), 53–60. DOI 10.1016/j.jpaa.2009.04.011 | MR 2561766 | Zbl 1175.13008
[4] Bazzoni S., Glaz S.: Gaussian properties of total rings of quotients. J. Algebra 310 (2007), 180–193. DOI 10.1016/j.jalgebra.2007.01.004 | MR 2307788 | Zbl 1118.13020
[5] Bourbaki N.: Algèbre commutative, Chapitre 10. Masson, Paris, 1989. MR 2272929 | Zbl 1107.13002
[6] Costa D.L.: Parameterizing families of non-Noetherian rings. Comm. Algebra 22 (1994), 3997–4011. DOI 10.1080/00927879408825061 | MR 1280104 | Zbl 0814.13010
[7] Couchot F.: Flat modules over valuation rings. J. Pure Appl. Algebra 211 (2007), 235–247. DOI 10.1016/j.jpaa.2007.01.010 | MR 2333769 | Zbl 1123.13016
[8] D'Anna M.: A construction of Gorenstein rings. J. Algebra 306 (2006), 507–519. DOI 10.1016/j.jalgebra.2005.12.023 | MR 2271349 | Zbl 1120.13022
[9] D'Anna M., Fontana M.: An amalgamated duplication of a ring along an ideal: the basic properties. J. Algebra Appl. 6 (2007), 443–459. DOI 10.1142/S0219498807002326 | MR 2337762 | Zbl 1126.13002
[10] D'Anna M., Fontana M.: An amalgamated duplication of a ring along a multiplicative-canonical ideal. Arkiv Mat. 45 (2007), 241–252. DOI 10.1007/s11512-006-0038-1 | MR 2342602
[11] D'Anna M., Finacchiaro C.A., Fontana M.: Properties of chains of prime ideals in amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633–1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689
[12] El Baghdadi S., Jhilal A., Mahdou N.: On FF-rings. J. Pure Appl. Algebra 216 (2012), 71–76. DOI 10.1016/j.jpaa.2011.05.003 | MR 2826419 | Zbl 1239.13002
[13] Fadden C.M., Greferath M., Zumbrägel J.: Characteristics of Invariant Weights Related to Code Equivalence over Rings. inria-00607730, version 1–11 Jul 2011. Zbl 1259.94068
[14] Glaz S.: Prüfer Conditions in Rings with Zero-Divisors. Lecture Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 272–281. DOI 10.1201/9781420028249.ch17 | MR 2140700 | Zbl 1107.13023
[15] Glaz S.: Commutative Coherent Rings. Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. MR 0999133 | Zbl 0787.13001
[16] Glaz S.: Controlling the Zero Divisors of a Commutative Rings. Lecture Notes in Pure and Applied Mathematics, 231, Marcel Dekker, New York, 2003, pp. 191–212. MR 2029827
[17] Huckaba J.A.: Commutative Rings with Zero Divizors. Marcel Dekker, New York-Basel, 1988. MR 0938741
[18] Kabbaj S., Mahdou N.: Trivial extensions defined by coherent-like conditions. Comm. Algebra 32 (2004), no. 10, 3937–3953. DOI 10.1081/AGB-200027791 | MR 2097439 | Zbl 1068.13002
[19] Mahdou N.: On Costa-conjecture. Comm. Algebra 29 (2001), 2775–2785. DOI 10.1081/AGB-100104986 | MR 1848381
[20] Mahdou N.: On $2$-von Neumann regular rings. Comm. Algebra 33 (2005), 3489–3496. DOI 10.1080/00927870500242991 | MR 2175447 | Zbl 1080.13004
[21] Mahdou N., Mouanis H.: Some homological properties of subrings retract and applications to fixed rings. Comm. Algebra 32 (2004), no. 5, 1823–1834. DOI 10.1081/AGB-120029904 | MR 2099703
[22] Nagata M.: Local Rings. Interscience, New York, 1962. MR 0155856 | Zbl 0386.13010
[23] Rotman J.J.: An Introduction to Homological Algebra. Academic Press, New York, 1979. MR 0538169 | Zbl 1157.18001
[24] Sally J.D., Vasconcelos W.V.: Flat ideal I. Comm. Algebra 3 (1975), 531–543. DOI 10.1080/00927877508822059 | MR 0379466
[25] Zafruallah M.: Flatness and invertibility of an ideal. Comm. Algebra 18 (1990), 2151–2158. DOI 10.1080/00927879008824014 | MR 1063129
Partner of
EuDML logo