[3] Blum, J.:
Numerical Simulation and Optimal Control in Plasma Physics. With Applications to Tokamaks. Wiley/Gauthier-Villars Series in Modern Applied Mathematics. Wiley Chichester (1989).
MR 0996236
[4] Boccardo, L., León, S. Segura de, Trombetti, C.:
Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J. Math. Pures Appl. 80 (2001), 919-940.
DOI 10.1016/S0021-7824(01)01211-9 |
MR 1865381
[5] Courant, R., Hilbert, D.:
Methods of Mathematical Physics Vol. I. Translated and revised from the German original. First English ed. Interscience Publishers New York (1953).
MR 0065391 |
Zbl 0051.28802
[6] Díaz, J. I., Galiano, G., Padial, J. F.:
On the uniqueness of solutions of a nonlinear elliptic problem arising in the confinement of a plasma in a stellarator device. Appl. Math. Optimization 39 (1999), 61-73.
DOI 10.1007/s002459900098 |
MR 1654558 |
Zbl 0923.35056
[7] Díaz, J. I., Lerena, M. B., Padial, J. F., Rakotoson, J. M.:
An elliptic-parabolic equation with a nonlocal term for the transient regime of a plasma in a stellarator. J. Differ. Equations 198 (2004), 321-355.
DOI 10.1016/j.jde.2003.07.015 |
MR 2038584 |
Zbl 1050.35151
[8] Díaz, J. I., Padial, J. F., Rakotoson, J. M.:
Mathematical treatment of the magnetic confinement in a current carrying stellarator. Nonlinear Anal., Theory Methods Appl. 34 (1998), 857-887.
MR 1636600 |
Zbl 0946.35119
[9] Díaz, J. I., Rakotoson, J. M.:
On a nonlocal stationary free-boundary problem arising in the confinement of a plasma in a stellarator geometry. Arch. Ration. Mech. Anal. 134 (1996), 53-95.
DOI 10.1007/BF00376255 |
MR 1392309 |
Zbl 0863.76092
[10] Ferone, A., Jalal, M., Rakotoson, J. M., Volpicelli, R.:
A topological approach for generalized nonlocal models for a confined plasma in a tokamak. Commun. Appl. Anal. 5 (2001), 159-181.
MR 1844189 |
Zbl 1084.35512
[14] Grad, H., Hu, P. N., Stevens, D. C.:
Adiabatic evolution of plasma equilibrium. Proc. Nat. Acad. Sci. USA 72 (1975), 3789-3793.
DOI 10.1073/pnas.72.10.3789
[15] Henrot, A.:
Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Basel (2006).
MR 2251558
[16] Lieb, E. H., Loss, M.:
Analysis. 2nd ed. Graduate Studies in Mathematics 14. American Mathematical Society Providence (2001).
MR 1817225
[17] Mercier, C.: The Magnetohydrodynamic Approach to the Problem of a Plasma Confinement in Closed Magnetic Configurations. EURATOM-CEA, Comm. of the European Communities Luxembourg (1974).
[20] Mossino, J.:
Inégalités isopérimétriques et applications en physique. Travaux en Cours. Hermann Paris (1984), French.
MR 0733257
[23] Mossino, J., Temam, R.:
Free boundary problems in plasma physics: review of results and new developments. Free Boundary Problems, Theory and Applications Vol. II. Proc. interdisc. Symp., Montecatini/Italy 1981, Res. Notes Math. 79 A. Fasano Pitman (1983), 672-681.
Zbl 0512.76126
[25] Rakotoson, J. M.:
Galerkin approximation, strong continuity of the relative rearrangement map and application to plasma physics equations. Differ. Integral Equ. 12 (1999), 67-81.
MR 1668537 |
Zbl 1005.76097
[27] Rakotoson, J. M.:
Relative Rearrangement. An Estimation Tool for Boundary Problems. (Réarrangement relatif. Un instrument d'estimations dans les problèmes aux limites). Mathématiques & Applications 64 Springer, Berlin (2008), French.
DOI 10.1007/978-3-540-69118-1 |
MR 2455723 |
Zbl 1170.35036
[29] Rakotoson, J. M.:
Un modèle non local en physique des plasmas: résolution par une méthode de degré topologique. (A nonlocal model in plasma physics: solution by the method of topological degree). Acta Appl. Math. 4 (1985), 1-14 French.
DOI 10.1007/BF02293489 |
MR 0791260 |
Zbl 0586.35091
[30] Rakotoson, J. M., Seoane, M. L.:
Numerical approximations of the relative rearrangement: the piecewise linear case. Application to some nonlocal problems. M2AN, Math. Model. Numer. Anal. 34 (2000), 477-499.
DOI 10.1051/m2an:2000152 |
MR 1765671 |
Zbl 0963.76052
[32] Stampacchia, G.:
Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 (1965), 189-257 French.
DOI 10.5802/aif.204 |
MR 0192177 |
Zbl 0151.15401
[34] Temam, R.:
Monotone rearrangement of a function and the Grad-Mercier equation of plasma physics. Recent methods in non-linear analysis, Proc. Int. Meet., Rome 1978. Pitagora Bologna 83-98 (1979).
MR 0533163
[37] Zou, W., Li, F., Lv, B.:
On a nonlocal elliptic problem arising in the confinement of a plasma in a current carrying stellarator. Mathematical Methods in the Applied Sciences 36 (2013), 2128-2144.
MR 3124782 |
Zbl 1276.35146