Previous |  Up |  Next

Article

Keywords:
nonlinear elliptic equation; relative rearrangement; Tokamak; decreasing rearrangement; plasma physics
Summary:
The paper deals with a nonlocal problem related to the equilibrium of a confined plasma in a Tokamak machine. This problem involves terms $u'_{\ast }(|u>u(x)|)$ and $|u>u(x)|$, which are neither local, nor continuous, nor monotone. By using the Galerkin approximate method and establishing some properties of the decreasing rearrangement, we prove the existence of solutions to such problem.
References:
[1] Jr., F. J. Almgren, Lieb, E. H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2 (1989), 683-773. DOI 10.1090/S0894-0347-1989-1002633-4 | MR 1002633 | Zbl 0688.46014
[2] Berestycki, H., Brézis, H.: On a free boundary problem arising in plasma physics. Nonlinear Anal., Theory Methods Appl. 4 (1980), 415-436. DOI 10.1016/0362-546X(80)90083-8 | MR 0574364 | Zbl 0437.35032
[3] Blum, J.: Numerical Simulation and Optimal Control in Plasma Physics. With Applications to Tokamaks. Wiley/Gauthier-Villars Series in Modern Applied Mathematics. Wiley Chichester (1989). MR 0996236
[4] Boccardo, L., León, S. Segura de, Trombetti, C.: Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J. Math. Pures Appl. 80 (2001), 919-940. DOI 10.1016/S0021-7824(01)01211-9 | MR 1865381
[5] Courant, R., Hilbert, D.: Methods of Mathematical Physics Vol. I. Translated and revised from the German original. First English ed. Interscience Publishers New York (1953). MR 0065391 | Zbl 0051.28802
[6] Díaz, J. I., Galiano, G., Padial, J. F.: On the uniqueness of solutions of a nonlinear elliptic problem arising in the confinement of a plasma in a stellarator device. Appl. Math. Optimization 39 (1999), 61-73. DOI 10.1007/s002459900098 | MR 1654558 | Zbl 0923.35056
[7] Díaz, J. I., Lerena, M. B., Padial, J. F., Rakotoson, J. M.: An elliptic-parabolic equation with a nonlocal term for the transient regime of a plasma in a stellarator. J. Differ. Equations 198 (2004), 321-355. DOI 10.1016/j.jde.2003.07.015 | MR 2038584 | Zbl 1050.35151
[8] Díaz, J. I., Padial, J. F., Rakotoson, J. M.: Mathematical treatment of the magnetic confinement in a current carrying stellarator. Nonlinear Anal., Theory Methods Appl. 34 (1998), 857-887. MR 1636600 | Zbl 0946.35119
[9] Díaz, J. I., Rakotoson, J. M.: On a nonlocal stationary free-boundary problem arising in the confinement of a plasma in a stellarator geometry. Arch. Ration. Mech. Anal. 134 (1996), 53-95. DOI 10.1007/BF00376255 | MR 1392309 | Zbl 0863.76092
[10] Ferone, A., Jalal, M., Rakotoson, J. M., Volpicelli, R.: A topological approach for generalized nonlocal models for a confined plasma in a tokamak. Commun. Appl. Anal. 5 (2001), 159-181. MR 1844189 | Zbl 1084.35512
[11] Ferone, A., Jalal, M., Rakotoson, J. M., Volpicelli, R.: Nonlocal generalized models for a confined plasma in a tokamak. Appl. Math. Lett. 12 (1999), 43-46. DOI 10.1016/S0893-9659(98)00124-4 | MR 1663417 | Zbl 0951.76099
[12] Fiorenza, A., Rakotoson, J. M., Zitouni, L.: Relative rearrangement method for estimating dual norms. Indiana Univ. Math. J. 58 (2009), 1127-1150. DOI 10.1512/iumj.2009.58.3580 | MR 2541361 | Zbl 1178.46026
[13] Gourgeon, H., Mossino, J.: Sur un problème à frontière libre de la physique des plasmas. Ann. Inst. Fourier 29 (1979), 127-141 French. DOI 10.5802/aif.770 | MR 0558592 | Zbl 0405.35070
[14] Grad, H., Hu, P. N., Stevens, D. C.: Adiabatic evolution of plasma equilibrium. Proc. Nat. Acad. Sci. USA 72 (1975), 3789-3793. DOI 10.1073/pnas.72.10.3789
[15] Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Basel (2006). MR 2251558
[16] Lieb, E. H., Loss, M.: Analysis. 2nd ed. Graduate Studies in Mathematics 14. American Mathematical Society Providence (2001). MR 1817225
[17] Mercier, C.: The Magnetohydrodynamic Approach to the Problem of a Plasma Confinement in Closed Magnetic Configurations. EURATOM-CEA, Comm. of the European Communities Luxembourg (1974).
[18] Mossino, J.: A priori estimates for a model of Grad-Mercier type in plasma confinement. Appl. Anal. 13 (1982), 185-207. DOI 10.1080/00036818208839390 | MR 0663773 | Zbl 0478.35018
[19] Mossino, J.: Application des inéquations quasi-variationnelles à quelques problèmes non linéaires de la physique des plasmas. Isr. J. Math. 30 (1978), 14-50 French. DOI 10.1007/BF02760826 | MR 0508250 | Zbl 0399.35047
[20] Mossino, J.: Inégalités isopérimétriques et applications en physique. Travaux en Cours. Hermann Paris (1984), French. MR 0733257
[21] Mossino, J.: Some nonlinear problems involving a free boundary in plasma physics. J. Differ. Equations 34 (1979), 114-138. DOI 10.1016/0022-0396(79)90021-4 | MR 0549587 | Zbl 0406.35027
[22] Mossino, J., Temam, R.: Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics. Duke Math. J. 48 (1981), 475-495. DOI 10.1215/S0012-7094-81-04827-4 | MR 0630581 | Zbl 0476.35031
[23] Mossino, J., Temam, R.: Free boundary problems in plasma physics: review of results and new developments. Free Boundary Problems, Theory and Applications Vol. II. Proc. interdisc. Symp., Montecatini/Italy 1981, Res. Notes Math. 79 A. Fasano Pitman (1983), 672-681. Zbl 0512.76126
[24] Rakotoson, J. M.: Existence of bounded solutions of some degenerate quasilinear elliptic equations. Commun. Partial Differ. Equations 12 (1987), 633-676. DOI 10.1080/03605308708820505 | MR 0879354 | Zbl 0627.47035
[25] Rakotoson, J. M.: Galerkin approximation, strong continuity of the relative rearrangement map and application to plasma physics equations. Differ. Integral Equ. 12 (1999), 67-81. MR 1668537 | Zbl 1005.76097
[26] Rakotoson, J. M.: Multivalued fixed point index and nonlocal problems involving relative rearrangement. Nonlinear Anal., Theory Methods Appl. 66 (2007), 2470-2499. DOI 10.1016/j.na.2006.03.032 | MR 2312600 | Zbl 1130.46014
[27] Rakotoson, J. M.: Relative Rearrangement. An Estimation Tool for Boundary Problems. (Réarrangement relatif. Un instrument d'estimations dans les problèmes aux limites). Mathématiques & Applications 64 Springer, Berlin (2008), French. DOI 10.1007/978-3-540-69118-1 | MR 2455723 | Zbl 1170.35036
[28] Rakotoson, J. M.: Relative rearrangement for highly nonlinear equations. Nonlinear Anal., Theory Methods Appl. 24 (1995), 493-507. DOI 10.1016/0362-546X(95)93090-Q | MR 1315691 | Zbl 0830.35036
[29] Rakotoson, J. M.: Un modèle non local en physique des plasmas: résolution par une méthode de degré topologique. (A nonlocal model in plasma physics: solution by the method of topological degree). Acta Appl. Math. 4 (1985), 1-14 French. DOI 10.1007/BF02293489 | MR 0791260 | Zbl 0586.35091
[30] Rakotoson, J. M., Seoane, M. L.: Numerical approximations of the relative rearrangement: the piecewise linear case. Application to some nonlocal problems. M2AN, Math. Model. Numer. Anal. 34 (2000), 477-499. DOI 10.1051/m2an:2000152 | MR 1765671 | Zbl 0963.76052
[31] Rakotoson, J. M., Temam, R.: A co-area formula with applications to monotone rearrangement and to regularity. Arch. Ration. Mech. Anal. 109 (1990), 213-238. DOI 10.1007/BF00375089 | MR 1025171 | Zbl 0735.49039
[32] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 (1965), 189-257 French. DOI 10.5802/aif.204 | MR 0192177 | Zbl 0151.15401
[33] Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60 (1975), 51-73. DOI 10.1007/BF00281469 | MR 0412637 | Zbl 0328.35069
[34] Temam, R.: Monotone rearrangement of a function and the Grad-Mercier equation of plasma physics. Recent methods in non-linear analysis, Proc. Int. Meet., Rome 1978. Pitagora Bologna 83-98 (1979). MR 0533163
[35] Temam, R.: Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equations 2 (1977), 563-585. DOI 10.1080/03605307708820039 | MR 0602544 | Zbl 0355.35023
[36] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient. Potential Anal. 18 (2003), 391-404. DOI 10.1023/A:1021884903872 | MR 1953268 | Zbl 1040.35010
[37] Zou, W., Li, F., Lv, B.: On a nonlocal elliptic problem arising in the confinement of a plasma in a current carrying stellarator. Mathematical Methods in the Applied Sciences 36 (2013), 2128-2144. MR 3124782 | Zbl 1276.35146
Partner of
EuDML logo