Previous |  Up |  Next

Article

Keywords:
Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result
Summary:
In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm.
References:
[1] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal 44 (2006), 82-101. DOI 10.1137/S0036142905444482 | MR 2217373 | Zbl 1145.76015
[2] Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations. Numer. Methods Partial Differ. Equations 12 (1996), 333-346. DOI 10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P | MR 1388444 | Zbl 0852.76039
[3] Feng, X., Kim, I., Nam, H., Sheen, D.: Locally stabilized $P_{1}$-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations. J. Comput. Appl. Math. 236 (2011), 714-727. DOI 10.1016/j.cam.2011.06.009 | MR 2853496 | Zbl 1233.65088
[4] He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier-Stokes problem. Computing 74 (2005), 337-351. DOI 10.1007/s00607-004-0118-7 | MR 2149343 | Zbl 1099.65111
[5] Hecht, F., al., et: FREEFEM$++$, version 2.3-3 [online]. Available from: http://www.freefem.org (2008).
[6] Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math. Probl. Eng. 2011 (2011), Article ID: 745908. MR 2826898 | Zbl 1235.74286
[7] Layton, W.: A two level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993), 33-38. DOI 10.1016/0898-1221(93)90318-P | MR 1220955 | Zbl 0773.76042
[8] Layton, W., Lenferink, W.: Two-level Picard and modified Picard methods for the Navier-Stokes equations. Appl. Math. Comput. 69 (1995), 263-274. DOI 10.1016/0096-3003(94)00134-P | MR 1326676 | Zbl 0828.76017
[9] Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998), 2035-2054. DOI 10.1137/S003614299630230X | MR 1639994 | Zbl 0913.76050
[10] Li, J., Chen, Z.: A new local stabilized nonconforming finite element method for the Stokes equations. Computing 82 (2008), 157-170. DOI 10.1007/s00607-008-0001-z | MR 2421582 | Zbl 1155.65101
[11] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214 (2008), 58-65. DOI 10.1016/j.cam.2007.02.015 | MR 2391672 | Zbl 1132.35436
[12] Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994), 231-237. DOI 10.1137/0915016 | MR 1257166 | Zbl 0795.65077
[13] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996), 1759-1777. DOI 10.1137/S0036142992232949 | MR 1411848 | Zbl 0860.65119
[13] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996), 1759-1777. DOI 10.1137/S0036142992232949 | MR 1411848 | Zbl 0860.65119
Partner of
EuDML logo