[1] Balbes, R., Dwinger, P.:
Distributive Lattices. University Missouri Press, Columbia, 1974.
MR 0373985 |
Zbl 0321.06012
[2] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.:
Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[4] Ciungu, L. C.:
Classes of residuated lattices. Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180–207.
MR 2359903 |
Zbl 1119.03343
[5] Dvurečenskij, A., Rachůnek, J.:
On Riečan and Bosbach states for bounded R$\ell $-monoids. Math. Slovaca 56 (2006), 487–500.
MR 2293582
[7] Esteva, F., Godo, L.:
Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271–288.
MR 1860848 |
Zbl 0994.03017
[8] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.:
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007.
MR 2531579 |
Zbl 1171.03001
[9] Hájek, P.:
Metamathematics of Fuzzy Logic. Springer, Dordrecht, 1998.
MR 1900263
[11] Jipsen, P., Tsinakis, C.:
A Survey of Residuated Lattices. In: Ordered Algebraic Structures, Kluwer, Dordrecht, (2006), 19–56.
MR 2083033
[12] Rachůnek, J., Slezák, V.:
Negation in bounded commutative DR$\ell $-monoids. Czechoslovak Math. J. 56 (2007), 755–763.
DOI 10.1007/s10587-006-0053-1
[13] Rachůnek, J., Švrček, F.:
MV-algebras with additive closure operators. Acta Univ. Palacki. Olomouc., Fac. Rer. Nat., Math. 39 (2000), 183–189.
MR 1826361 |
Zbl 1039.06005
[15] Sikorski, R.:
Boolean Algebras. 2nd edition, Springer-Verlag, Berlin–Göttingen–Heidelbeg–New York, 1963.
Zbl 0122.26101