[1] Abraham, F. F.: Homogeneous Nucleation Theory. Acad. Press, New York, 1974.
[3] Bongiorno, V., Scriven, L. E., Davis, H. T.:
Molecular theory of fluid interfaces. J. Colloid and Interface Science 57 (1967), 462–475.
DOI 10.1016/0021-9797(76)90225-3
[6] Derrick, G. H.:
Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252–1254.
DOI 10.1063/1.1704233 |
MR 0174304
[7] Fife, P. C.:
Mathematical Aspects of Reacting and Diffusing Systems. Lecture notes in Biomathematics Springer 28 (1979), 223–224.
MR 0527914 |
Zbl 0403.92004
[9] Gouin, H., Rotoli, G.:
An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255–260.
DOI 10.1016/S0093-6413(97)00022-0 |
Zbl 0899.76064
[12] Kiguradze, I., Chanturia, T.:
Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993.
MR 1220223 |
Zbl 0782.34002
[19] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.
[21] O’Regan, D.:
Existence theory for nonlinear ordinary differential equations. Kluwer, Dordrecht, 1997.
MR 1449397 |
Zbl 1077.34505
[22] Rachůnková, I., Rachůnek, L.:
Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation. Abstract and Applied Analysis 2011 (2011), 1–9.
Zbl 1222.34034
[23] Rachůnková, I., Tomeček, J.:
Bubble-type solutions of nonlinear singular problem. Mathematical and Computer Modelling 51 (2010), 658–669.
DOI 10.1016/j.mcm.2009.10.042
[24] Rachůnková, I., Rachůnek, L., Tomeček, J.:
Existence of oscillatory solutions of singular nonlinear differential equations. Abstract and Applied Analysis 2011 (2011), 20 pages.
MR 2795071 |
Zbl 1222.34035
[26] Rachůnková, I., Tomeček, J.:
Homoclinic solutions of singular nonautonomous second order differential equations. Boundary Value Problems 2009 (2009), 1–21.
Zbl 1190.34028
[27] Rohleder, M.:
On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127.
MR 3058877 |
Zbl 1279.34050
[28] van der Waals, J. D., Kohnstamm, R.: Lehrbuch der Thermodynamik. 1, Leipzig, 1908.
[29] Wong, J. S. W.:
Second–order nonlinear oscillations: A case history. In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138.
MR 2309447 |
Zbl 1147.34024
[31] Wong, P. J. Y., Agarwal, R. P.:
The oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comput. 79 (1996),207–237.
MR 1407599