Previous |  Up |  Next

Article

Keywords:
Boolean-like algebra; central element; noncommutative lattice theory
Summary:
In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf {A}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf {A}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.
References:
[1] Bignall, R. J., Leech, J.: Skew Boolean algebras and discriminator varieties. Algebra Universalis 33 (1995), 387–398. DOI 10.1007/BF01190707 | MR 1322781 | Zbl 0821.06013
[2] Blok, W. J., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences IV. Algebra Universalis 31 (1994), 1–35. DOI 10.1007/BF01188178 | MR 1250226 | Zbl 0817.08005
[3] Burris, S. N., Sankappanavar, H. P.: A Course in Universal Algebra. Springer, Berlin, 1981. MR 0648287 | Zbl 0478.08001
[4] Busaniche, M., Cignoli, R.: Constructive logic with strong negation as a substructural logic. Journal of Logic and Computation 20, 4 (2010), 761–793. DOI 10.1093/logcom/exn081 | MR 2670235 | Zbl 1205.03040
[5] Chajda, I., Halaš, R., Rosenberg, I. G.: Ideals and the binary discriminator in universal algebra. Algebra Universalis 42 (1999), 239–251. DOI 10.1007/s000120050001 | MR 1759484 | Zbl 0979.08001
[6] Comer, S.: Representations by algebras of sections over Boolean spaces. Pacific Journal of Mathematics 38 (1971), 29–38. DOI 10.2140/pjm.1971.38.29 | MR 0304277 | Zbl 0219.08002
[7] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse on Substructural Logics. Elsevier, Amsterdam, 2007.
[8] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998. MR 1900263 | Zbl 1007.03022
[9] Jackson, M., Stokes, T.: Semigroups with if-then-else and halting programs. International Journal of Algebra and Computation 19, 7 (2009), 937–961. DOI 10.1142/S0218196709005354 | MR 2589423 | Zbl 1203.08005
[10] Koppelberg, S.: General theory of Boolean algebras. In: Koppelberg, S., Monk, J. D., Bonnet, R. (eds.): Handbook of Boolean Algebras, Vol. 1, North-Holland, Amsterdam, 1989. MR 0991565
[11] Leech, J.: Skew lattices in rings. Algebra Universalis 26 (1989), 48–72. DOI 10.1007/BF01243872 | MR 0981425 | Zbl 0669.06006
[12] Leech, J.: Recent developments in the theory of skew lattices. Semigroup Forum 52 (1996), 7–24. DOI 10.1007/BF02574077 | MR 1363525 | Zbl 0844.06003
[13] Manzonetto, G., Salibra, A.: From $\lambda $-calculus to universal algebra and back. In: MFCS’08, volume 5162 of LNCS, (2008), 479–490. MR 2539394 | Zbl 1173.03302
[14] Paoli, F., Ledda, A., Kowalski, T., Spinks, M.: Quasi-discriminator varieties. (submitted).
[15] Salibra, A., Ledda, A., Paoli, F., Kowalski, T.: Boolean-like algebras. Algebra Universalis 69, 2 (2013), 113–138. DOI 10.1007/s00012-013-0223-6 | MR 3037008 | Zbl 1284.06033
[16] Spinks, M.: On the Theory of Pre-BCK Algebras. PhD Thesis, Monash University, 2003.
[17] Vaggione, D.: Varieties in which the Pierce stalks are directly indecomposable. Journal of Algebra 184 (1996), 424–434. DOI 10.1006/jabr.1996.0268 | MR 1409222 | Zbl 0868.08003
Partner of
EuDML logo