[2] Batagelj V.:
An improved inductive definition of a restricted class of triangulations of the plane. Combinatorics and Graph Theory (Warsaw, 1987), Banach Center Publ., 25, PWN, Warsaw, 1989, pp. 11–18.
MR 1097631
[5] Cavenagh N.:
A uniqueness result for $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 47 (2006), 337–358.
MR 2241536 |
Zbl 1138.05007
[7] Colbourn C.J., Dinitz J.H., Wanless I.M.: Latin Squares. in: The CRC Handbook of Combinatorial Designs, 2nd ed. (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, Boca Raton, FL, 2007, pp. 135–152.
[8] Drápal A., Griggs T.S.:
Homogeneous Latin bitrades. Ars Combin. 96 (2010), 343–351.
MR 2666820
[10] Grannell M.J., Griggs T.S., Knor M.:
Biembeddings of symmetric configurations and $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 49 (2008), 411–420.
MR 2490436
[13] Lovász L.:
Combinatorial Problems and Exercises. 2nd edition, North-Holland, Amsterdam, 1993.
MR 1265492 |
Zbl 1120.05001
[15] Saaty T.L., Kainen P.L.:
The Four-Colour Problem: Assaults and Conquests. McGraw-Hill, New York, 1977.
MR 0480047
[16] Tutte W.T. (Ed.):
Recent Progresses in Combinatorics. Academic Press, New York, 1969, p. 343.
MR 0250896
[17] Wanless I.:
A computer enumeration of small Latin trades. Australas. J. Combin. 39 (2007), 247–258.
MR 2351205 |
Zbl 1138.05009