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Near-homogeneous spherical Latin bitrades

Nicholas J. Cavenagh

Abstract. A planar Eulerian triangulation is a simple plane graph in which each
face is a triangle and each vertex has even degree. Such objects are known to
be equivalent to spherical Latin bitrades. (A Latin bitrade describes the dif-
ference between two Latin squares of the same order.) We give a classification
in the near-regular case when each vertex is of degree 4 or 6 (which we call a
near-homogeneous spherical Latin bitrade, or NHSLB). The classification demon-
strates that any NHSLB is equal to two graphs embedded in hemispheres glued
at the equator, where each hemisphere belongs to one of nine possible types,
each of which may be described recursively.

Keywords: planar Eulerian triangulation; Latin bitrade; Latin square

Classification: 05B15, 05C45, 05C10

1. Introduction

A planar Eulerian triangulation is a simple plane graph in which each face is a
triangle and the degree of each vertex is even. Batagelj introduced an algorithm
for generating any such triangulation recursively using only one specific graph
as a starting point and applying only two types of generating rules ([2]). This
theory was applied using the freely available package plantri ([3]) to generate
isomorph-free planar Eulerian triangulations of small orders ([12]).

Meanwhile, Wanless enumerated isomorphism classes of Latin bitrades of small
orders in [17]. A Latin bitrade is a pair of partial Latin squares {T1, T2} such that
T1 and T2 each occupy the same set of non-empty cells, corresponding cells contain
distinct symbols and each row and column contains the same set of symbols
in T1 as in T2, yet in a different order. From such a combinatorial structure
we can construct a graph G({T1, T2}) which is a triangulation of some pseudo-
surface. This is achieved by associating each occurrence of a symbol s in row r and
column c with a triangular face on these 3 vertices (with triangles from T1 and T2

corresponding to faces of different colours in a face 2-colouring of the graph G).
(See Figure 1 for an example and [4] for more detail.) When the pseudo-surface
is the plane, we refer to the Latin bitrade as being spherical .

Wanless’ enumeration drew attention to the fact that the sequence giving the
number of isomorphism classes of spherical Latin bitrades coincides exactly with
the sequence giving the number of isomorphism classes of Eulerian triangulations,
as far as could be verified computationally. The general equivalence between these
two combinatorial objects was proven in [6].
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When we restrict ourselves to regularity or near-regularity, there is some ev-
idence to suggest that Latin bitrades become directly classifiable. For example,
Latin bitrades that correspond to 6-regular graphs (and are thus of genus 1 by
Euler’s formula) can be described directly and up to isomorphism via a direct
geometric construction ([5]). It is shown in [10] that this result can also be de-
rived as a corollary of work done by Negami [14] and Altsluher [1]. Other toroidal
Latin bitrades which have a near-regular structure are classified in [8].
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Figure 1. The unique 4-regular planar Eulerian triangulation
and its corresponding Latin bitrade {T1, T2}.

It is not hard to show that there is precisely one regular spherical Latin bitrade,
the smallest possible one shown above in Figure 1. In this work we focus on spher-
ical Latin bitrades in which every vertex has degree 4 or degree 6; this provides
an infinite class which is as close as we can get in some sense to being regular
whilst retaining planarity. We henceforth call such structures near-homogeneous
spherical Latin bitrades (NHSLB). It is most convenient for our purposes to take
the graphical form; i.e. planar Eulerian triangulations in which each vertex has
degree 4 or 6. It is well known (see, for example, [15]) that any planar Eulerian
triangulation and hence any NHSLB, is tripartite (this follows in fact from the
equivalence to spherical Latin bitrade), a fact we make use of throughout this
paper.

Euler’s formula implies that any NHSLB has precisely six vertices of degree 4.
It is given as an “easy” exercise in 13.4 of [11] to show that an NHSLB may have
k vertices of degree 6 for any integer k ≥ 0. A long-standing unsolved conjecture,
attributed to Barnette (Conjecture 5 in [16]), purports that the dual graph of
any planar Eulerian triangulation has a Hamilton cycle. This conjecture has been
shown to be true for graphs with at most 66 vertices in [12]. Using a proof that
does not involve a classification, Barnette’s conjecture has been proven true in [9]
for the special case of dual graphs of NHSLBs.
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We begin with a lemma which applies to any planar Eulerian triangulation and
is helpful to our classification of NHSLBs.

Lemma 1. Suppose there exist distinct vertices v1, v2 and v3 and edges {v1, v2},
{v2, v3} and {v3, v1} within a planar Eulerian triangulation G. Consider the plane

graphG′ formed by taking the cycle (v1, v2, v3, v1) and any vertices and edges from

G inside the cycle. Then either G′ = (v1, v2, v3, v1) and thus is a triangular face

of G, or the vertices v1, v2 and v3 each have degree at least 4 within G′.

Proof: Let G′ be such a plane graph which is not a triangular face of G and is
minimal with respect to the properties described. Then if either v1, v2 or v3 have
degree 2 in G′, we are forced to have a multiple edge, a contradiction. So we may
assume that each of v1, v2 and v3 have degree at least 3 in G′. There are either
2 or 0 vertices from {v1, v2, v3} with odd degree in G′. Suppose that v1 and v2
have odd degree 3. Then there is an internal vertex w such that {v1, v2, w} is a
triangular face. Thus there must be an edge from w to v3. Let G1 and G2 be the
graphs formed by taking the cycles (v3, v2, w, v3) and (v3, v1, w, v3) (respectively)
and any vertices and edges inside these cycles. Since v3 must have degree at
least 4, at least one of G1 and G2 must have an internal vertex, contradicting the
minimality of G′. �

In this paper we use the standard definitions of walk, path, circuit and cycle.
Let H be the infinite 6-regular triangulation of the plane, where each triangle is
equilateral and of equal size (unit length). When we say that a plane graph G
is some closed polygon from H, it is understood that we include all vertices and
edges from the border or inside the polygon, and none from outside.

Our classification method is summarized as follows. We show that any NHSLB
can be considered as the glueing of two plane graphs along the equator of a sphere;
where the two hemispheres belong to one of nine different types. Each of these
types can be constructed by recursive methods. In our classification, in general one
NHSLB can arise in many different ways, and consequently isomorphism classes
are not fully revealed. We comment more about the advantages and disadvantages
of the classification in the conclusion.

2. Two methods for glueing

In this section we describe two methods to “glue” two plane graphs to obtain
another plane graph. Let G1 and G2 be two plane graphs and let the cycles
(v1, v2, . . . , vα, v1) and (w1, w2, . . . , wβ , w1) be their respective external faces. Let
k be some integer with 1 ≤ k ≤ α, β. Then we may form another plane graph by
identifying vi with wi, for each i, 1 ≤ i ≤ k, so that this graph has external face

(vk, vk+1, . . . , vα, v1 = w1, wβ , wβ−1, . . . , wk = vk).

We say this graph is G1 ⊕ G2 (with respect to paths P1 = [v1, v2, . . . , vk] and
P2 = [w1, w2, . . . , wk]). Note in the case k = 1, the resultant graph has a cut
vertex.
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In the second glueing method, we have G1 and G2 as above but we require
α = β. Let vα+1 = v1 and wα+1 = w1. Then we define G ◦ G′ to be the
plane graph obtained by embedding G and G′ on the Northern and Southern
hemispheres, respectively, so that the external faces of each lie on the equator,
with vi = wi and {vi, vi+1} = {wi, wi+1} for each i, 1 ≤ i ≤ α. Note that this
“glueing” is defined with respect to the labelling of the vertices on the external
faces of G and G′.

3. The classification begins

Next, we wish to define certain plane graphs which may occur as subgraphs
of a NHSLB. Let x2, x4 and x6 be positive integers such that 0 ≤ x2, x4, x6 and
x6 ≤ 1. Then we define G(x2, x4, x6, z4, z6) to be the set of plane graphs G such
that:

• G has an external face with x2+x4+x6 vertices (which we call external);
• xi is the number of external vertices of degree i;
• every other (internal) face of G is a triangle and each vertex which is not
external (i.e. internal) has degree 4 or degree 6;

• zi is the number of internal vertices of degree i.

Euler’s formula gives the following constraint.

Lemma 2. x2 + z4 − x6 = 3.

Thus, for convenience, we write G(x2, z4, x6) instead of G(x2, x4, x6, z4, z6). We
also let

G :=
⋃

G(x2, z4, x6).

The above lemma means that (x2, z4, x6) must be an element of the following set
of size 9:

{(3, 0, 0), (2, 1, 0), (1, 2, 0), (0, 3, 0), (4, 0, 1), (3, 1, 1), (2, 2, 1), (1, 3, 1), (0, 4, 1)}.

Lemma 3. Any NHSLB includes a subgraphG ∈ G(x2, z4, x6), where x2+x6 ≤ 1.

Proof: Let G be a NHSLB and let v0 be a vertex of G. Create a walk v0, v1, . . .
within G such that {vi, vi+1} is the third edge adjacent to {vi, vi−1} in a clockwise
direction. By this we mean there are two distinct vertices w and w′ adjacent to vi
such that {vi, w} and {vi, w

′} lie “between” vi−1 and vi+1 in a clockwise direction.
By finiteness such a walk must contain circuits. Consider a minimal circuit (i.e.
a cycle) L within the path. Since the graph is on the plane we may assume,
without loss of generality, that each vertex on the cycle is adjacent to two vertices
strictly inside the loop, with at most one exception (the first/last vertex of the
cycle). Thus deleting any points outside of L and any edges adjacent to them,
we obtain an element of G(x2, z4, x6) with at most one external vertex not of
degree 4. �

Corollary 4. Any NHSLB is isomorphic to G◦G′ for some G ∈ G(x2, z4, x6) and
G′ ∈ G(x′

2, z
′
4, x

′
6), where x2 + x6 ≤ 1, x′

6 ≤ x2, x6 ≤ x′
2.
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To obtain a NHSLB any vertex of degree 6 on the equator must be glued to
a vertex of degree 2 from the other graph (hence some of the conditions of the
above theorem). Thus by classifying the plane graphs in G for the nine choices of
parameters we in effect provide a classification of every possible NHSLB.

Corollary 5. The number of external vertices of any graph in G is divisible by 3.

Proof: Let G ∈ G and consider the graph G′ = G ◦ G. It is possible that G′

is not a proper NHSLB (as there may be repeated edges); however it is always
an Eulerian near-triangulation of the plane; i.e. an Eulerian plane graph with
each face a triangle. It is well-known that such structures are tripartite (see, for
example, [13]); thus G is also tripartite. Let L be the external cycle of G. Vertices
distance 3 apart in L must share the same colour; the result follows. �

With this aim in mind we give some preliminary lemmas.

Lemma 6. Let (v1, v2, . . . , vα, vα+1 = v1) be the external face of G ∈
G(x2, z4, x6). Suppose that there is an edge {v1, vj} such that j /∈ {2, α}. Then

either:

• j = 3 and v2 has degree 2; or
• j = α− 1 and vα had degree 2; or
• at least one of v1 and vj has degree 6.

Proof: Suppose first, for the sake of contradiction, that there is an edge {v1, vj}
that none of the above cases arise. Since v1 and vj are not adjacent on the external
face, they must each have degree 4. If we cut along the edge {v1, vj} to create
two plane graphs G1 and G2, so that G = G1 ⊕G2 along the path [v1, vj ], we see
that for one such graph v1 and vj must have degree 2, as otherwise each graph
has one vertex of odd degree. It then follows that either G1 or G2 is a triangle,
contradicting our original assumption. �

Lemma 7. Let (v1, v2, . . . , vα, vα+1 = v1) be the external face of G ∈
G(x2, z4, x6). Suppose that v1 and vj have degree 4 and there is a path [v1, w, vj ]
where w is an internal vertex such that j /∈ {2, α}. Then there is (at least one)
internal edge from one of {vα, v1, v2} to one of {vj−1, vj , vj+1}.

Proof: We assume for the sake of contradiction that the lemma is false. Suppose
first that w has degree 4. Let v1, u1, u2, u3 be the vertices adjacent to w in
clockwise order. We cannot have vj adjacent to v1 so we must have vj = u2.
Since v1 is external and of degree 4, without loss of generality {v1, u3} is an
external edge. Thus u3 ∈ {vα, v2} and is adjacent to vj , a contradiction.

Otherwise w has degree 6. Let v1, u1, u2, u3, u4, u5 be the vertices adjacent
to w in clockwise order. Then vj ∈ {u2, u3, u4}. Since v1 is external and of
degree 4, without loss of generality the edge {u5, v1} is external. Thus vj 6= u4. If
vj = u3, cutting the graph along the path [vj , w, v1] shows that {vj, u4} is external
(otherwise the components each have one vertex of odd degree). The edge {u4, u5}
must be internal. Thus u5 ∈ {vα, v2} is adjacent to u4 ∈ {vj−1, vj+1} via an
internal edge, a contradiction. Thus vj = u2. If {vj, u3} is an external edge this
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again causes a contradiction cutting the graph along the path [vj , w, v1]. Thus
{vj , u1} is an external edge, and we get a contradiction as above. �

So if we can classify the structure of each of the types, we will in effect have
classified every possible NHSLB. It turns out that the types are related to each
other via recursive methods. First, we show that the vertices of degree 2 can
be dealt with in many cases in the following manner. Let G ∈ G(x2, z4, x6)
with x2 ≥ 1 and x6 ≤ 1. Let the external face of G be (v1, v2, . . . , vα+1 = v1),
where α ≥ 6. Let 3 ≤ k ≤ α − 3 where vk has degree 2, vk−2, vk−1, vk+1 and
vk+2 have degree 4 and vertex vk+3 has degree at least 4. By observation, vk−1

and vk+1 are adjacent and there exists a vertex w whose neighbourhood includes
vk−2, vk−1, vk+1 and vk+2. Since vk+3 has degree 4, by Lemma 6 vertices vk−2

and vk+2 are non-adjacent and the degree of w must be 6. We claim that w must
be internal. To see this, suppose that w is external. Remove from G the vertices
vk−1, vk and vk+1 and all edges adjacent to them. The resultant plane graph G′

has w as a cut-vertex. But cutting G′ at w results in two graphs with one vertex
of odd degree, a contradiction. Thus w is indeed internal. Let G′ = D(G, vk) be
the plane graph created by first deleting vk−1, vk and vk+1 from G and any edges
adjacent to these vertices, then adding the (external) edge {vk−2, vk+2}. Then,
D(G, vk) ∈ G(x2 − 1, z4 + 1, x6) and has α − 3 external vertices. Note that w is
now an internal vertex of degree 4 within D(G, vk).
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Figure 2. Removing external vertices of degree 2 via the ope-
ration D.

It is helpful (for the sake of being able to construct our graphs recursively)
to observe necessary and sufficient conditions to invert this process. Let G ∈
G(x2, z4, x6) where z4 ≥ 1. Let v1 and v2 be vertices on the external face of degree
at least 4 and w an internal vertex of degree 4 such that {v1, v2, w} is a triangular
face and the edge {v1, v2} is external. Then there exists G′ ∈ G(x2 + 1, z4 − 1, 0)
and vk ∈ G′ such that D(G′, vk) = G. In this case we say that G = D−1(G′, w).
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In fact, D(D−1(G′, w), vk) = G′ and D−1(D(G, vk), w) = G whenever the inner
functions are well-defined.

To classify graphs from G with x6 = 0, we need to identify some small “starter”
graphs from which we can recursively build larger ones. To this end, let G3, G6

and G9 be equilateral triangles of widths 1, 2 and 3, respectively, from H. Next,
take an equilateral triangle from H of side 2 units, where A, B and C are the
vertices of degree 2. Next add a new vertex D and edges {D,B}, {D,C} and
{B,C} to create a graph with 6 external vertices so that {B,C} is an internal
edge. We call this graph G′

6.
In the following lemma we reduce any graph from G ∈ G with x6 = 0 and

x2 ≥ 1 to either a small “starter” graph or a graph from G(0, 3, 0).

Lemma 8. Let G ∈ G with x6 = 0 and x2 ≥ 1. Let vk be an external vertex of G
of degree 2. If G ∈ G(1, 2, 0), then D(G, vk) ∈ G(0, 3, 0). Let G ∈ G(2, 1, 0). Then
either G is isomorphic to G′

6 or D(G, vk) ∈ G(1, 2, 0). Let G ∈ G(3, 0, 0). Then

either G is isomorphic to an element of {G3, G6, G9} or D(G, vk) ∈ G(2, 1, 0).

Proof: From Corollary 5, the number of external vertices of G is divisible by 3.
If G has three external vertices, by Lemma 1 G is isomorphic to G3. Otherwise
G has at least 6 external vertices.

If G ∈ G(1, 2, 0), then vertices vk−2, vk−1, vk+1, vk+2 and vk+3 are distinct and
each have degree 4; thus we may apply the method described before the proof.

Otherwise, let l be the minimum distance between any two vertices of degree
2 in G. If l ∈ {1, 2}, then by observation G is isomorphic to G3 or G6. Hence
we may assume that l ≥ 3. If G ∈ G(2, 1, 0), the vertices of degree 2 must be
separated by a path of at least three edges in either direction within the external
face. If they are separated minimally in both directions, we have the graph G6.
Otherwise we can label the external vertices so that vk−2, vk−1, vk+1, vk+2 and
vk+3 are distinct and each have degree 4, so D(G, vk) is well-defined.

Finally, suppose that G ∈ G(3, 0, 0). If l = 3, by observation G is isomorphic
to G9. Otherwise l ≥ 4 and we may again apply the method described before the
proof. �

4. Wrapping

Before we classify the structure of the remaining sets of the form G(x2, z4, x6),
we describe various ways that some elements of these sets may be embedded into
others. The general idea is to “wrap” a plane graph by adding triangular faces to
create an external face with a new set of vertices. This process may either create
a plane graph with the same set of parameters {x2, z4, x6} or we may change the
parameters slightly. The idea is to build plane graphs recursively where possible.

Let G ∈ G(x2, z4, x6) and let the external face of G be the cycle

(v1, v2, . . . , vα, vα+1 = v1).

Let S be the set of subscripts of vertices of the external face which have degree 2.
Let T ⊂ S, with |T | = y2 and 0 ≤ y2 ≤ x2. Let X be the set of subscripts
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of vertices of the external face which have degree 4. Let W ⊂ X , where |W | =
y4 ∈ {0, 1}, y4 ≤ x4 and y4 + x6 ≤ 1. We embed G into a larger plane graph
CT,W (G) ∈ G(x2, x4, x6) as follows. We add vertices wi, 1 ≤ i ≤ α and extra edges
so that {vi, vi−1, wi−1} is a triangular face, and so that each of these triangles lies
outside the original external loop of vertices. Next, for each i:

• if vi is an external vertex of degree 2 (in G) and v /∈ T , add three new
vertices wi(1), wi(2) and wi(3) and extra edges so that {vi, wi−1, wi(1)},
{vi, wi(1), wi(3)}, {vi, wi(3), wi} and {wi(1), wi(2), wi(3)} are new triangular
faces;

• if vi is an external vertex of degree 4 and vi /∈ W or vi ∈ T (in G), add
the edge {wi−1, wi};

• if vi is an external vertex of degree 6 or vi ∈ W , first let w′
i−2 = w(i−1)(3)

(if this is defined); otherwise w′
i−2 = wi−2. Similarly, let w′

i+1 = w(i+1)(1)

(if this is defined); otherwise w′
i+1 = wi+1. Next, identify wi = vi−1

and wi−1 = vi+1 (and appropriate edges), so that {vi−1, vi, vi+1} be-
comes a face; and identify w′

i−2 = w′
i+1 (and appropriate edges) so that

{vi−1, vi+1, w
′
i−2} is now a triangular face. In doing so, w′

i−2 becomes an
external vertex.

(In the above, the third case arises for at most one such i; we deal with every
other case first, so that w′

i−2 and w′
i+1 are well-defined.) We give examples of the

wrapping process in Figures 3 and 4.
Apart from where specified in the final case, we specify that the newly created

external vertices are pairwise distinct. Observe the following.

Lemma 9. If G ∈ G(x2, z4, x6) and G has α external vertices, then CT,W (G) ∈
G(x2 − y2, z4, x6 + y4) and has α+ 3(x2 − y2 − x6 − y4) external vertices.

We next investigate whether CT,W (G) is always well-defined. The above lemma
potentially allows the number of external vertices to decrease. From Corollary 5,
α is divisible by 3. If α ≥ 6, then since x6 + y4 ≤ 1 and y2 ≤ x2, CT,W (G) has
at least three external vertices. Otherwise consider when α = 3. If x2 ≥ 1, then
from Lemma 1, we must have x2 = 3; thus x6 = 0 and y4 ≤ x4 = 0 and CT,W (G)
has at least 3 external vertices.

Otherwise x2 = 0. If y4 = 1, then CT,W (G) contains a doubled edge; thus
CT,W (G) is not a subgraph of a NHSLB. If x6 = 1, then our NHSLB is equal
to G ⊕ G′ for some G′ with three external vertices, at least one of which has
degree 2. Thus, G′ is forced to be a triangle by Lemma 1. In summary, the cases
when CT,W (G) is not well-defined do not effect our overall method of classification.

5. The classification continues

Lemma 10. Let G ∈ G(0, 3, 0). Then G = CT,∅(G
′) for some G′ ∈ G(x2, z4, 0)

with x2 + z4 = 3.
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Proof: Let G ∈ G(0, 3, 0) with external cycle (v1, v2, . . . , vα+1 = v1). By
Lemma 6 there is no edge of the form {vi, vj} where j /∈ {i − 1, i + 1}. Further-
more, by Lemma 7, there is no internal vertex w such that {vi, w} and {w, vj}
are edges, where j /∈ {i − 1, i, i + 1}. It follows that there exist pairwise dis-
tinct vertices w1, w2, w3, . . . , wα such that {vi, vi+1, wi} and {wi, wi+1, vi+1} are
internal faces for each i, 1 ≤ i ≤ α. Now, delete the vertices v1, v2, . . . , vk and
any edges adjacent to them. What remains is a plane graph G′ with an exter-
nal face (w1, w2, w3, . . . , wk, w1). Clearly G′ ∈ G(x2, z4, 0) where x2 + z4 = 3;
indeed G = CT,∅(G

′) for some (possible empty) set T of external vertices in G′ of
degree 2. �

The following corollary follows from the results we have so far. It suggests a
method of generating computationally all graphs in G(x2, z4, 0) of a given size. It
is clear there are many slight variations on this approach.

Corollary 11. Let G ∈ G(x2, z4, 0). Then there exists a list of graphs

G0, G1, . . . , Gk such that:

• G0 ∈ {G3, G6, G9, G
′
6};

• for each i ≥ 0, Gi+1 = CT,∅(Gi) (where T is some (possibly empty) subset
of the external vertices of degree 2 in Gi) or Gi+1 = D−1(Gi, w), where w
is an internal vertex of Gi of degree 4 adjacent to two external vertices,

each of degree 4;
• Gk = G.

Next we consider the cases where x6 = 1. If x2 ≥ 2, these can be constructed
from the above cases by the removal of a parallelogram from the regular hexagonal
triangulation of the plane. To see this, observe the following lemma.

Lemma 12. Let G ∈ G(x2, z4, 1) where x2 ≥ 2. Let the external cycle of G
be (v1, v2, . . . , vα+1 = v1), where v1 and vl have degree 2, vk has degree 6, 1 <
k < l and if either 1 < j < k or k < j < l then vj has degree 4. Take a

parallelogram ABCD from H with vertices A, B, C and D, |AB| = |CD| = k− 1
and |AC| = |BD| = l − k, with B and D of degree 2. Let P be the path on the

external face of ABCD which begins at A, ends at C and includes B. Let G′ be

the graph ABCD ⊕ G, where we glue path P to the path [v1, v2, . . . , vl]. Then

G′ ∈ G(x2 − 1, z4, 0).

We have just two remaining classes of graph to classify, namely G(1, 3, 1) and
G(0, 4, 1). Recall that the glueing operation ⊕ may glue paths of length 0 (i.e.
vertices). The external face of such a planar graph is a circuit rather than a cycle.
Let x′

2, x
′′
2 ≥ 1 and let G1 ∈ G(x′

2, z
′
4, 0) and G2 ∈ G(x′′

2 , z
′′
4 , 0). Let v′ and v′′ be

external vertices of degree 2 in G1 and G2, respectively. Denote G1 ⊕ G2 with
respect to the paths P1 = [v′] and P2 = [v′′] by G(v′) ⊕ G2(v

′′). We can define
CT (G1(v

′) ⊕ G2(v
′′)) ∈ G(x′

2 + x′′
2 − 2, z′4 + z′′4 , 1) in the natural way, treating

v′ = v′′ as a degree of vertex 6 on one side and as a degree of vertex 4 on the
other (obtaining possibly two distinct graphs by this choice). We demonstrate
this process with an example in Figure 5.
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In the following lemma, recall that G6 is the equilateral triangle from H with
side length 2.

Lemma 13. Let G ∈ G(0, 4, 1). Then either:

(a) there exist G1 ∈ G(1, z′4, 0) and G2 ∈ G(1, z′′4 , 0) with z′4+z′′4 = z4, with v′

and v′′ being the vertices of degree 2 in G1 and G2 respectively, so that G
is formed by overlapping the triangles from G1 and G2 containing v′ and
v′′ respectively, so that v′ and v′′ are distinct vertices in G of degree 4; or

(b) there exist G1 and G2 as in (a), but we form G by overlapping copies of

G6 from G1 and G2 containing v′ and v′′ respectively, so that v′ and v′′

are distinct vertices in G of degree 4; or
(c) G = CT (G1 ⊕G2) for some G1 ∈ G(x′

2, z
′
4, 0) and G2 ∈ G(x′′

2 , z
′′
4 , 0) such

that x′
2 + x′′

2 + z′4 + z′′4 = z4 and there exists an external vertex v′ of

degree 2 in G1 and an external vertex v′′ of degree 2 in G2 so that the

glueing paths are of length 0 and are equal to [v′] and [v′′]; or
(d) G = CT,W (G′) for some G′ ∈ G(x′

2, z
′
4, x

′
6).

(See Figure 6 for an illustration of these four cases.)

Proof: Let the external face of G be the sequence of vertices v1, v2, . . . , vα, vα+1

= v1 where v1 has degree 6. Let the neighbours of v1 (without loss of generality
in clockwise order) be v2, u1, u2, u3, u4, vα. Suppose u1 is external. Then we can
cut G into two plane graphs which glue at the edge {u1, v1}; however, as x2 = 0,
each graph will have only one vertex of odd degree, which is impossible. Similarly,
u4 is internal.

Consider the case when at least one of u2 or u3 is an external vertex. Since
u1 and u4 are internal, we must have the edge {u2, u3} external. Let G1 be the
component which includes u3 when we cut along the edge {u2, v1}. Similarly, let
G2 be the component which includes u2 when we cut along the edge {u3, v1}.
Then u2 is a vertex of degree 2 in G1 and u3 is a vertex of degree 2 in G2.
Moreover, v1 is a vertex of degree 4 in both G1 and G2. Thus, we have case (a).

Otherwise both u2 and u3 are internal vertices. Let y be the vertex not equal
to v1 such that {y, u2, u3} is a triangular face. Since u2 and u3 are internal, there
must exist w and z such that {w, y, u3} and {y, z, u2} are triangular faces. (It
is possible that w = u4 or z = u1 but this does not interfere with our line of
argument.) Suppose y is an external vertex. Then y must have degree 4 and w
and z are each external. Cut along the path v1, u2, z to create a graph G1 (the
component including w) and again along the path v, u3, w to create a graph G2

(the component including z). It follows that we have case (b). Otherwise y is
internal.

For each i, 2 ≤ i ≤ α − 1, there exists an internal vertex wi such that
{vi, vi+1, wi} is a face. By Lemmas 6 and 7 (and from above), the vertices
v1, v2, . . . , vα, w2, w3, . . . , wα−1, u1, u2, u3, u4 are pairwise distinct. So we obtain
an internal circuit C = [y, u2, u1, w2, w3, . . . , wα−1, u4, u3, y]. Suppose that y = wj

where 2 ≤ j ≤ α− 1. Then we have case (c).
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Otherwise the circuit C is a cycle. Delete any vertices and edges external to
this cycle to obtain a new plane graph G. Then at most one external vertex of G
has degree 6 (i.e. the vertex y) and the remaining external vertices have degree 2
or 4. Thus we have case (d). �

Finally, we deal with the class of graphs G(1, 3, 1), by showing how each graph
in this class can be related to one from G(0, 3, 0). To this end, let G ∈ G(1, 3, 1)
and suppose that (v1, v2, . . . , vα, vα+1 = v1) is the external face of G, where v1
has degree 6. Let vk be the vertex of degree 2. Suppose that k /∈ {2, 3, α− 1, α}.
Then D(G, vk) ∈ G(0, 4, 1). Otherwise, by Lemma 1 and Corollary 5, α ≥ 6 and
without loss of generality the vertex of degree 2 is either v2 or v3.

First consider the case that v2 is the vertex of degree 2. Let G′ be the graph
created by adding the edges {vα, vα−2}, {v2, vα−2} and {v2, vα}, so that vertices
v1, vα−1 and vα are internal in G′. Then G′ ∈ G(0, 4, 1) with vertex vα−2 of
degree 6 and the internal vertex vα−1 of degree 4 in G′. Otherwise v3 has degree 2.
Let T = {v3}, then CT,∅(G) ∈ G(0, 4, 1).

6. Conclusion

Now that the classification is fully presented, it is worth discussing its strengths
and weaknesses. It is quite clear that a NHSLB can, in general, arise from our
constructions in more than one way. Indeed, a disadvantage of the classification
presented is that it does not directly reveal the structure of isomorphism classes.
It could be argued, then, that the method given by Batagelj is also a classification,
in that it provides a way of generating every possible example, with isomorphic
graphs being constructed in many different ways.

However, although the method outlined does not provide clearly stated isomor-
phism classes, it provides considerably more direct information than the Batagelj
method about isomorphisms. It tells us a great deal about substructures that can
and must occur within a NHSLB.

At some point I thought that it would be nice to classify each set of graphs
G(x2, z4, x6) in terms of glueing together regions cut out from H. Such an ap-
proach could potentially make isomorphisms more obvious. For example, it is
not hard to show that any graph from G(3, 0, 0) is an equilateral triangle from
H. Any graph from G(2, 1, 0) can be constructed by glueing a trapezium from
H with a triangle from H, so that two sides of the triangle are glued along one
side of the trapezium. Next, any element of G(4, 0, 1) can be obtained by taking a
triangle T of length k from H and “deleting” a parallelogram P (within T ) with
side lengths strictly less than k and overlapping some vertex of T . So in these
cases we can classify types directly without using recursion. However, for other
cases this approach appears to be complicated and lengthy to articulate. The
classification we have presented has the advantage of being succinct enough to
present in one paper.

In terms of computation, although like Batagelj we have used recursive meth-
ods, it seems likely that in general the number of recursive steps will be much
smaller, since in the Batagelj construction each step creates at most one or two
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new vertices. Whether the methods in this paper do indeed lead to more efficient
enumeration of NHSLBs is an open question. Should alternate classifications
of NHSLBs be conjectured, the result in this paper might be used to test their
validity.

We make one final important point which is that there does exist an infinite
family of NHSLB’s which may not be formed by glueing two elements of G, each of
which have x6 = 0. Let H be any convex hexagon taken from H. Next, glue two
copies of H together via the operation ◦, so that corresponding external vertices
and edges are equal. Let the resultant NHSLB be H ′. Then it can be shown
that any path taken as in the proof of Lemma 3 results in at least one of G or G′

containing an external vertex of degree 6, where H ′ = G ◦ G′ as in Corollary 4.
It follows that the method described by Corollary 11 does not give rise to every
possible NHSLB.

Acknowledgments. I would like to thank Professor Aleš Drápal and his re-
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to the details of my solution. The observation about H ′ given in the previous
section was made by Szabados.

References

[1] Altshuler A., Construction and enumeration of regular maps on the torus, Discrete Math.
115 (1973), 201–217.

[2] Batagelj V., An improved inductive definition of a restricted class of triangulations of the

plane, Combinatorics and Graph Theory (Warsaw, 1987), Banach Center Publ., 25, PWN,
Warsaw, 1989, pp. 11–18.

[3] Brinkmann G., McKay B., Guide to using plantri , version 4.1
http://cs.anu.edu.au/ bdm/plantri/

[4] Cavenagh N., The theory and application of Latin bitrades: a survey , Math. Slovaca 58

(2008), 691–718.
[5] Cavenagh N., A uniqueness result for 3-homogeneous Latin trades, Comment. Math. Univ.

Carolin. 47 (2006), 337–358.
[6] Cavenagh N., Lisonek P., Planar Eulerian triangulations are equivalent to spherical Latin

bitrades, J. Combin. Theory Ser. A 115 (2008), 193–197.
[7] Colbourn C.J., Dinitz J.H., Wanless I.M., Latin Squares, in: The CRC Handbook of Com-

binatorial Designs, 2nd ed. (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, Boca Raton,
FL, 2007, pp. 135–152.
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Figure 3. The graph G ∈ G(4, 0, 1) is “wrapped” to the graphs
C(G) and CT (G) (where T = {v4, v6}).



Near-homogeneous spherical Latin bitrades 327

1v

w3

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

H

v

v

v

v

v

2

3

4

5

6

v

w

wwwww

w

w

w2

4(1)

4(2)4(3)456(1)

6(2)

2(3)

w2(2)

2w’

Figure 4. The graph H ∈ G(3, 0, 0) is “wrapped” to the graph
CW (H) (where W = {v1}.)



328 N.J. Cavenagh

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

Figure 5. The graph CT (G3(v
′)⊕G3(v

′′)).
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Figure 6. The four cases of Lemma 13.
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