Previous |  Up |  Next

Article

MSC: 16S36, 16U80
Keywords:
Armendariz rings; McCoy rings; Nagata extension; semicommutative rings; $\sigma$-skew McCoy
Summary:
Let $R$ be a ring and $\sigma$ an endomorphism of $R$. We give a generalization of McCoy's Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28--29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and $\sigma$-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.
References:
[1] Anderson D.D., Camillo V.: Armendariz rings and Gaussian rings. Comm. Algebra 26 (1998), no. 7, 2265–2272. DOI 10.1080/00927879808826274 | MR 1626606 | Zbl 0915.13001
[2] Armendariz E.P.: A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc. 18 (1974), 470–473. DOI 10.1017/S1446788700029190 | MR 0366979 | Zbl 0292.16009
[3] Annin S.: Associated primes over skew polynomials rings. Comm. Algebra 30 (2002), 2511–2528. DOI 10.1081/AGB-120003481 | MR 1904650
[4] Başer M., Harmanci A., Kwak T.K.: Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297. DOI 10.4134/BKMS.2008.45.2.285 | MR 2419077 | Zbl 1144.16025
[5] Başer M., Hong C.Y., Kwak T.K.: On extended reversible rings. Algebra Colloq. 16 (2009), 37–48. MR 2477108 | Zbl 1167.16018
[6] Başer M., Kwak T.K., Lee Y.: The McCoy condition on skew polynomial rings. Comm. Algebra 37 (2009), no. 11, 4026–4037. DOI 10.1080/00927870802545661 | MR 2573233 | Zbl 1187.16027
[7] Clark W.E.: Twisted matrix units semigroup algebras. Duke Math. J. 34 (1967), 417–424. DOI 10.1215/S0012-7094-67-03446-1 | MR 0214626 | Zbl 0204.04502
[8] Hirano Y.: On annihilator ideals of polynomial ring over a noncommutative ring. J. Pure. Appl. Algebra 168 (2002), no. 1, 45–52. DOI 10.1016/S0022-4049(01)00053-6 | MR 1879930
[9] Hong C.Y., Kim N.K., Kwak T.K.: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. DOI 10.1016/S0022-4049(99)00020-1 | MR 1776431 | Zbl 0982.16021
[10] Hong C.Y., Kim N.K., Kwak T.K.: On skew Armendariz rings. Comm. Algebra 31 (2003), no. 1, 103–122. DOI 10.1081/AGB-120016752 | MR 1969216 | Zbl 1042.16014
[11] Hong C.Y., Kwak T.K., Rezvi S.T.: Extensions of generalized Armendariz rings. Algebra Colloq. 13 (2006), no. 2, 253–266. MR 2208362
[12] Hong C.Y., Kim N.K., Lee Y.: Ore extensions of quasi-Baer rings. Comm. Algebra 37 (2009), no. 6, 2030–2039. DOI 10.1080/00927870802304663 | MR 2530760 | Zbl 1177.16016
[13] Hong C.Y., Kim N.K., Lee Y.: Extensions of McCoy's Theorem. Glasg. Math. J. 52 (2010), 155–159. DOI 10.1017/S0017089509990243 | MR 2587825 | Zbl 1195.16026
[14] Hong C.Y., Jeon Y.C., Kim N.K., Lee Y.: The McCoy condition on noncommutative rings. Comm. Algebra 39 (2011), no. 5, 1809–1825. DOI 10.1080/00927872.2010.480952 | MR 2821508 | Zbl 1231.16032
[15] Huh C., Lee Y., Smoktunowics A.: Armendariz rings and semicommutative rings. Comm. Algebra 30 (2002), no. 2, 751–761. DOI 10.1081/AGB-120013179 | MR 1883022
[16] Huh C., Kim H.K., Kim N.K., Lee Y.: Basic examples and extensions of symmetric rings. J. Pure Appl. Algebra 202 (2005), 154–167. DOI 10.1016/j.jpaa.2005.01.009 | MR 2163406 | Zbl 1078.16030
[17] McCoy N.H.: Annihilators in polynomial rings. Amer. Math. Monthly 64 (1957), 28–29. DOI 10.2307/2309082 | MR 0082486 | Zbl 0077.25903
[18] McCoy N.H.: Remarks on divisors of zero. Amer. Math. Monthly 49 (1942), 286–295. DOI 10.2307/2303094 | MR 0006150 | Zbl 0060.07703
[19] Nagata M.: Local Rings. Interscience, New York, 1962. MR 0155856 | Zbl 0386.13010
[20] Nielsen P.P.: Semicommutative and McCoy condition. J. Pure Appl. Algebra 298 (2006), 134–141. MR 2215121
[21] Kim N.K., Lee Y.: Extensions of reversible rings. J. Pure Appl. Algebra 185 (2003), 207–223. DOI 10.1016/S0022-4049(03)00109-9 | MR 2006427 | Zbl 1040.16021
[22] Rege M.B., Chhawchharia S.: Armendariz rings. Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), 14–17. DOI 10.3792/pjaa.73.14 | MR 1442245 | Zbl 0960.16038
[23] Louzari M.: On skew polynomials over p.q.-Baer and p.p.-modules. Inter. Math. Forum 6 (2011), no. 35, 1739–1747. MR 2826885 | Zbl 1250.16023
[24] Zhang C.P., Chen J.L.: $\sigma$-skew Armendariz modules and $\sigma$-semicommutative modules. Taiwanese J. Math. 12 (2008), no. 2, 473–486. MR 2402129
Partner of
EuDML logo