Previous |  Up |  Next

Article

Keywords:
selection principles; strongly starcompact; strongly star-Menger; Alexandroff duplicate
Summary:
A space $X$ is strongly star-Menger if for each sequence $(\Cal U_n:n\in \Bbb N)$ of open covers of $X$, there exists a sequence $(K_n:n\in N)$ of finite subsets of $X$ such that $\{St(K_n,\Cal U_n):n\in \Bbb N\}$ is an open cover of $X$. In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.
References:
[1] Bonanzinga M., Matveev M.V.: Some covering properties for $\Psi $-spaces. Mat. Vesnik 61 (2009), 3–11. MR 2491560 | Zbl 1199.54140
[2] van Douwen E., Reed G.K., Roscoe A.W., Tree I.J.: Star covering properties. Topology Appl. 39 (1991), 71–103. DOI 10.1016/0166-8641(91)90077-Y | MR 1103993 | Zbl 0743.54007
[3] van Douwen E.: The integers and topology. Handbook of Set-theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 111–167. MR 0776622 | Zbl 0561.54004
[4] Engelking R.: General Topology, Revised and completed edition. Heldermann, Berlin, 1989. MR 1039321
[5] Fleischman W.M.: A new extension of countable compactness. Fund. Math. 67 (1971), 1–7. MR 0264608
[6] Kočinac Lj.D.R.: Star-Menger and related spaces. Publ. Math. Debrecen 55 (1999), 421–431. MR 1721880 | Zbl 1009.54025
[7] Kočinac Lj.D.R.: Star-Menger and related spaces II. Filomat (Niš) 13 (1999), 129–140. MR 1803019 | Zbl 1009.54025
[8] Matveev M.V.: A survey on star-covering properties. Topology Atlas, preprint No 330 (1998).
[9] Walker R.C.: The Stone-Čech Compactification. Springer, New York-Berlin, 1974. MR 0380698 | Zbl 0292.54001
[10] Song Y.-K.: On countable star-covering properties. Appl. Gen. Topol. 8 (2007), 2 249–258. MR 2398516 | Zbl 1144.54312
[11] Song Y.-K.: Remarks on star-Menger spaces. Houston J. Math., to appear.
Partner of
EuDML logo