Article
Keywords:
selection principles; strongly starcompact; strongly star-Menger; Alexandroff duplicate
Summary:
A space $X$ is strongly star-Menger if for each sequence $(\Cal U_n:n\in \Bbb N)$ of open covers of $X$, there exists a sequence $(K_n:n\in N)$ of finite subsets of $X$ such that $\{St(K_n,\Cal U_n):n\in \Bbb N\}$ is an open cover of $X$. In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.
References:
[1] Bonanzinga M., Matveev M.V.:
Some covering properties for $\Psi $-spaces. Mat. Vesnik 61 (2009), 3–11.
MR 2491560 |
Zbl 1199.54140
[3] van Douwen E.:
The integers and topology. Handbook of Set-theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 111–167.
MR 0776622 |
Zbl 0561.54004
[4] Engelking R.:
General Topology, Revised and completed edition. Heldermann, Berlin, 1989.
MR 1039321
[5] Fleischman W.M.:
A new extension of countable compactness. Fund. Math. 67 (1971), 1–7.
MR 0264608
[6] Kočinac Lj.D.R.:
Star-Menger and related spaces. Publ. Math. Debrecen 55 (1999), 421–431.
MR 1721880 |
Zbl 1009.54025
[8] Matveev M.V.: A survey on star-covering properties. Topology Atlas, preprint No 330 (1998).
[10] Song Y.-K.:
On countable star-covering properties. Appl. Gen. Topol. 8 (2007), 2 249–258.
MR 2398516 |
Zbl 1144.54312
[11] Song Y.-K.: Remarks on star-Menger spaces. Houston J. Math., to appear.