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Remarks on strongly star-Menger spaces

Yan-Kui Song

Abstract. A space X is strongly star-Menger if for each sequence (Un : n ∈ N) of
open covers of X, there exists a sequence (Kn : n ∈ N) of finite subsets of X such
that {St(Kn,Un) : n ∈ N} is an open cover of X. In this paper, we investigate the
relationship between strongly star-Menger spaces and related spaces, and also study
topological properties of strongly star-Menger spaces.

Keywords: selection principles, strongly starcompact, strongly star-Menger, Alexandroff
duplicate

Classification: 54D20, 54C10

1. Introduction

By a space we mean a topological space. Let us recall that a space X is
countably compact if every countable open cover of X has a finite subcover. Van
Douwen et al. [2] defined a space X to be strongly starcompact if for every open
cover U of X , there exists a finite subset F of X such that St(F,U) = X , where
St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}. They proved that every countably com-

pact space is strongly starcompact and every T2 strongly starcompact space is
countably compact, but this does not hold for T1-spaces (see [10, Example 2.5]).

Van Douwen et al. [2] defined a space X to be strongly star-Lindelöf if for every
open cover U of X , there exists countable subset F of X such that St(F,U) = X .

In [5], a strongly starcompact space is called starcompact and in [8], a strongly
star-Lindelöf space is called star-Lindelöf.

Kočinac [6], [7] defined a spaceX to be strongly star-Menger if for each sequence
(Un : n ∈ N) of open covers of X , there exists a sequence (Kn : n ∈ N) of finite
subsets of X such that {St(Kn,Un) : n ∈ N} is an open cover of X .

From the above definitions, it is not difficult to see that every strongly star-
compact space is strongly star-Menger and every strongly star-Menger space is
strongly star-Lindelöf.

The purpose of this paper is to investigate the relationship between strongly
star-Menger spaces and related spaces, and study topological properties of strong-
ly star-Menger spaces.

The author acknowledges the support from the National Natural Science Foundation (grant
11271036) of China.
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Throughout this paper, let ω denote the first infinite cardinal, ω1 the first
uncountable cardinal, c the cardinality of the set of all real numbers. For a
cardinal κ, let κ+ be the smallest cardinal greater than κ. For each ordinals α,
β with α < β, we write [α, β) = {γ : α ≤ γ < β}, (α, β] = {γ : α < γ ≤ β},
(α, β) = {γ : α < γ < β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is
an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is
often viewed as a space with the usual order topology. Other terms and symbols
that we do not define follow [4].

2. Strongly star-Menger spaces

First we give some examples showing relationships between strongly star-Men-
ger spaces and related spaces.

Example 2.1. There exists a Tychonoff strongly star-Menger space X which is
not strongly starcompact.

Proof: Let

X = ([0, ω]× [0, ω]) \ {〈ω, ω〉}

be the subspace of the product space [0, ω] × [0, ω]. Then X is not countably
compact, since {〈ω, n〉 : n ∈ ω} is a countable discrete closed subset of X . Hence
X is not strongly starcompact.

Next we show that X is strongly star-Menger. To this end, let {Un : n ∈ N}
be a sequence of open covers of X . For each n ∈ N, let Fn = ([0, ω]× {n− 1}) ∪
({n− 1} × [0, ω]). Then X =

⋃
n∈N Fn and Fn is a compact subset of X for each

n ∈ N. We can find a finite subset Kn of Fn such that Fn ⊆ St(Kn,Un) for each
n ∈ N. Thus the sequence (Kn : n ∈ N) witnesses for (Un : n ∈ N) that X is
strongly star-Menger. �

Next we give an example of a Tychonoff strongly star-Lindelöf space which is
not strongly star-Menger by using the following example from [1]. We make use of
two of the cardinals defined in [3]. Define ωω as the set of all functions from ω to
itself. For all f, g ∈ ωω, we say f ≤∗ g if and only if f(n) ≤ g(n) for all but finitely
many n. The unbounding number, denoted by b, is the smallest cardinality of
an unbounded subset of (ωω,≤∗). The dominating number, denoted by d, is the
smallest cardinality of a cofinal subset of (ωω,≤∗). It is not difficult to show that
ω1 ≤ b ≤ d ≤ c and it is known that ω1 < b = c, ω1 < d = c and ω1 ≤ b < d = c

are all consistent with the axioms of ZFC (see [3] for details).

Example 2.2 ([1]). Let A be an almost disjoint family of infinite subsets of ω
(i.e., the intersection of every two distinct elements ofA is finite) and letX = ω∪A
be the Isbell-Mrówka space constructed from A ([2], [4]). Then X is strongly star-
Menger if and only if |A| < d.
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Example 2.3. There exists a Tychonoff strongly star-Lindelöf space X which is
not strongly star-Menger.

Proof: Let X = ω ∪ A be the Isbell-Mrówka space, where A is the maximal
almost disjoint family of infinite subsets of ω with |A| = c. Then X is not
strongly star-Menger by Example 2.2. Since ω is a countable dense subset of X ,
X is strongly star-Lindelöf. Thus we complete the proof. �

Since strong starcompactness is equivalent to countable compactness for Haus-
dorff spaces (see [2]), the extent e(X) of every T2 strongly starcompact space X is
finite. Assuming d = c, let X = ω ∪A be the Isbell-Mrówka space with |A| = ω1.
Then, by Example 2.2, X is a strongly star-Menger space with e(X) = ω1, since
A is a discrete closed subset of X .

The author does not know if there exists a Tychonoff strongly star-Menger
space X such that e(X) ≥ c.

For a T1-space X , the extent e(X) of a strongly star-Menger space can be
arbitrarily large.

Example 2.4. For every infinite cardinal κ, there exists a T1 strongly star-
Menger space X such that e(X) ≥ κ.

Proof: Let κ be an infinite cardinal and let D = {dα : α < κ} be a set of
cardinality κ. Let X = [0, κ+) ∪D. We topologize X as follows: [0, κ+) has the
usual order topology and is an open subspace of X ; a basic neighborhood of a
point dα ∈ D takes the form

Oβ(dα) = {dα} ∪ (β, κ+) where β < κ+.

Then X is a T1 space and e(X) = κ, since D is discrete closed in X . To show that
X is strongly star-Menger, we only prove that X is strongly starcompact, since
every strongly starcompact space is strongly star-Menger. To this end, let U be
an open cover of X . Without loss of generality, we can assume that U consists
of basic open subsets of X . Thus it is sufficient to show that there exists a finite
subset F of X such that St(F,U) = X . Since [0, κ+) is countably compact, it is
strongly starcompact (see [2, 8]). Then we can find a finite subset F1 of [0, κ+)
such that [0, κ+) ⊆ St(F1,U). On the other hand, for each α < κ, there exists
βα < κ+ such that Oβα

(dα) is included in some member of U . If we choose

β < κ+ with β > sup{βα : α < κ}, then D ⊆ St(β,U). Let F = F1 ∪ {β}. Then
F is finite and St(F,U) = X . Hence X is strongly star-Menger. �

Next we study topological properties of strongly star-Menger spaces. In [11],
the author gave an example that assuming d = c, there exists a Tychonoff strongly
star-Menger space having a regular-closed subspace which is not strongly star-
Menger. But the author does not know if there exists an example in ZFC (that
is, without any set-theoretic assumption) showing that a regular-closed subspace
(or zero-set) of a strongly star-Menger space is strongly star-Menger.
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For a space X , recall that the Alexandroff duplicate A(X) of X is constructed
in the following way: The underlying set of A(X) is X × {0, 1}; each point of
X × {1} is isolated and a basic neighborhood of 〈x, 0〉 ∈ X × {0} is a set of the
form (U × {0})∪ ((U × {1}) \ {〈x, 1〉}), where U is a neighborhood of x in X . It
is well known that a space X is countably compact if and only if so is A(X). In
the following, we give two examples to show that the result cannot be generalized
to strongly star-Menger spaces.

Example 2.5. Assuming d = c, there exists a Tychonoff strongly star-Menger
space X such that A(X) is not strongly star-Menger.

Proof: Assuming d = c, letX = ω∪A be the Isbell-Mrówka space with |A| = ω1.
Then X is strongly star-Menger by Example 2.2 with e(X) = ω1, since A is
discrete closed in X . However A(X) is not strongly star-Menger. In fact, the
set A × {1} is an open and closed subset of X with |A × {1}| = ω1, and each
point 〈a, 1〉 is isolated for each a ∈ A. Hence A(X) is not strongly star-Menger,
since every open and closed subset of a strongly star-Menger space is strongly
star-Menger and A× {1} is not strongly star-Menger. �

Now we give a positive result. For showing the result, first we give a lemma.

Lemma 2.6. For T1-space X , e(X) = e(A(X)).

Proof: Since X is homeomorphic to the closed subset X × {0} of A(X), we
have e(X) ≤ e(A(X)). On the other hand, let F is any closed discrete subset
of A(X). Then F ∩ (X × {0}) is closed in X × {0} by the construction of the
topology of A(X). Hence |F ∩ (X × {0})| ≤ e(X). Moreover it is not difficult
to see that {〈x, 0〉 : 〈x, 1〉 ∈ F} is closed discrete in X × {0}. This implies that
|F ∩ (X × {1})| ≤ e(X). Thus e(A(X)) ≤ e(X). Therefore e(X) = e(A(X)). �

Theorem 2.7. If X is a strongly star-Menger space with e(X) < ω1, then A(X)
is strongly star-Menger.

Proof: We show that A(X) is strongly star-Menger. To this end, let (Un : n ∈ N)
be a sequence of open covers of A(X). For each n ∈ N and each x ∈ X , choose
an open neighborhood Wnx

= (Vnx
× {0, 1}) \ {〈x, 1〉} of 〈x, 0〉 satisfying that

there exists some U ∈ Un such that Wnx
⊆ U , where Vnx

is an open subset of
X containing x. For each n ∈ N, let Vn = {Vnx

: x ∈ X}. Then (Vn : n ∈ N) is
a sequence of open covers of X . There exists a sequence (K ′

n : n ∈ N) of finite
subsets of X such that

⋃
n∈N St(K ′

n,Vn) = X , since X is strongly star-Menger.

For each n ∈ N, let K ′′
n = K ′

n × {0, 1}. Then K ′′
n is a finite subset of A(X) and

X × {0} ⊆
⋃

n∈N St(K ′′
n,Un). Let A = A(X) \

⋃
n∈N St(K ′′

n,Un). Then A is a
discrete closed subset of A(X). By Lemma 2.6, the set A is countable and we can
enumerate A as {an : n ∈ N}. For each n ∈ N, let Kn = (K ′′

n × {0, 1}) ∪ {an}.
Then Kn is a finite subset of A(X) and A(X) =

⋃
n∈N St(Kn,Un), which shows

that A(X) is strongly star-Menger. �
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From the proof of Example 2.5, it is not difficult to show the following result.

Theorem 2.8. If X is a T1-space and A(X) is a strongly star-Menger space,

then e(X) < ω1,

Proof: Suppose that e(X) ≥ ω1. Then there exists a discrete closed subset B
of X such that |B| ≥ ω1. Hence B × {1} is an open and closed subset of A(X)
and every point of B × {1} is an isolated point. Thus A(X) is not strongly star-
Menger, since every open and closed subset of a strongly star-Menger space is
strongly star-Menger and B × {1} is not strongly star-Menger. �

We have the following corollary from Theorems 2.7 and 2.8.

Corollary 2.9. If X is a strongly star-Menger T1-space, then A(X) is strongly

star-Menger if and only if e(X) < ω1.

Remark 2.10. The author does not know if there is a space X such that A(X) is
strongly star-Menger, but X is not strongly star-Menger.

It is not difficult to show the following result.

Theorem 2.11. A continuous image of a strongly star-Menger space is strongly

star-Menger.

Next we turn to consider preimages. We show that the preimage of a strongly
star-Menger space under a closed 2-to-1 continuous map need not be strongly
star-Menger,

Example 2.12. There exist spacesX and Y , and a closed 2-to-1 continuous map
f : X → Y such that Y is a strongly star-Menger space, but X is not strongly
star-Menger.

Proof: Let Y be the space ω ∪ A of Example 2.5, and X be the Alexandroff
duplicate of Y . Then Y is strongly star-Menger, but X is not. Let f : X → Y be
the projection. Then f is a closed 2-to-1 continuous map, which completes the
proof. �

Now, we give a positive result:

Theorem 2.13. Let f be an open and closed, finite-to-one continuous map from

a space X onto a strongly star-Menger space Y . Then X is strongly star-Menger.

Proof: Let (Un : n ∈ N) be a sequence of open covers of X and let y ∈ Y . Since
f−1(y) is finite, for each n ∈ N there exists a finite subcollection Uny

of Un such

that f−1(y) ⊆
⋃
Uny

and U∩f−1(y) 6= ∅ for each U ∈ Uny
. Since f is closed, there

exists an open neighborhood Vny
of y in Y such that f−1(Vny

) ⊆
⋃
{U : U ∈ Uny

}.
Since f is open, we can assume that

(1) Vny
⊆

⋂
{f(U) : U ∈ Uny

}.
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For each n ∈ N, taking such open set Vny
for each y ∈ Y , we have an open cover

Vn = {Vny
: y ∈ Y } of Y . Thus (Vn : n ∈ N) is a sequence of open covers of Y ,

so that there exists a sequence (Kn : n ∈ N) of finite subsets of Y such that
{St(Kn,Vn) : n ∈ N} is an open cover of Y , since Y is strongly star-Menger.
Since f is finite-to-one, the sequence (f−1(Kn) : n ∈ N) is the sequence of finite
subsets of X . We show that {St(f−1(Kn),Un) : n ∈ N} is an open cover of X .
Let x ∈ X . Then there exists n ∈ N and y ∈ Y such that f(x) ∈ Vny

and
Vny

∩Kn 6= ∅. Since

x ∈ f−1(Vny
) ⊆

⋃
{U : U ∈ Uny

},

we can choose U ∈ Uny
with x ∈ U . Then Vny

⊆ f(U) by (1), and hence

U ∩ f−1(Kn) 6= ∅. Therefore x ∈ St(f−1(Kn),Un). Consequently, we have
{St(f−1(Kn),Un) : n ∈ N} is an open cover of X , which shows that X is strongly
star-Menger. �

Example 2.14. Assuming d = c, there exists a strongly star-Menger space X
and a compact space Y such that X × Y is not strongly star-Menger.

Proof: Assuming d = c, letX = ω∪A be the space of Example 2.2 with |A| = ω1.
Then X is strongly star-Menger by Example 2.2. Let D = {dα : α < ω1} be
the discrete space of cardinality ω1 and let Y = D ∪ {y∞} be the one-point
compactification of D. We show that X × Y is not strongly star-Menger. Since
|A| = ω1, we can enumerate A as {aα : α < ω1}. For each n ∈ N, let

Un = {({aα} ∪ aα)× (Y \ {dα}) : α < ω1} ∪ {X × {dα} : α < ω1} ∪ {ω × Y }.

Then Un is an open cover of X × Y . Let us consider the sequence (Un : n ∈ N)
of open covers of X × Y . It suffices to show that

⋃
n∈N St(Kn,Un) 6= X × Y for

any sequence (Kn : n ∈ N) of finite subsets of X × Y . Let (Kn : n ∈ N) be any
sequence of finite subsets of X × Y . For each n ∈ N, since Kn is finite, there
exists αn < ω1 such that

Kn ∩ (X × {dα}) = ∅ for each α > αn.

Let β = sup{αn : n ∈ N}. Then β < ω1 and

(
⋃

n∈N

Kn) ∩ (X × {dα}) = ∅ for each α > β.

If we pick α > β, then 〈aα, dα〉 /∈ St(Kn,Un) for each n ∈ N, since X × {dα} is
the only element of Un containing the point 〈aα, dα〉. This shows that X × Y is
not strongly star-Menger. �
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Remark 2.15. Example 2.14 also shows that Theorem 2.13 fails to be true if “open
and closed, finite-to-one” is replaced by “open perfect”.

The following example shows that the product of two strongly star-Menger
spaces (even if countably compact) need not be strongly star-Menger. In fact, the
following well-known example showing that the product of two countably compact
(and hence strongly star-Menger) spaces need not be strongly star-Menger. Here
we give the proof roughly for the sake of completeness.

Example 2.16. There exists two countably compact spaces X and Y such that
X × Y is not strongly star-Menger.

Proof: Let D be a discrete space of cardinality c. We can define X =
⋃

α<ω1
Eα

and Y =
⋃

α<ω1
Fα, where Eα and Fα are the subsets of βD which are defined

inductively so as to satisfy the following conditions (1), (2) and (3):

(1) Eα ∩ Fβ = D if α 6= β;
(2) |Eα| ≤ c and |Fβ | ≤ c;
(3) every infinite subset of Eα (resp., Fα) has an accumulation point in Eα+1

(resp., Fα+1).

These sets Eα and Fα are well-defined since every infinite closed set in βD has
cardinality 2c (see [9]). Then X × Y is not strongly star-Menger. In fact, the
diagonal {〈d, d〉 : d ∈ D} is an open and closed subset of X × Y with cardinality
c and every point of {〈d, d〉 : d ∈ D} is isolated. Then {〈d, d〉 : d ∈ D} is not
strongly star-Menger. Hence X × Y is not strongly star-Menger, since open and
closed subsets of strongly star-Menger spaces are strongly star-Menger. �

In [2, Example 3.3.3], van Douwen et al. gave an example showing that there
exists a countably compact (and hence strongly star-Menger) space X and a
Lindelöf space Y such that X × Y is not strongly star-Lindelöf. Therefore, this
example shows that the product of a strongly star-Menger space X and a Lindelöf
space Y need not be strongly star-Menger.
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[7] Kočinac Lj.D.R., Star-Menger and related spaces II, Filomat (Nǐs) 13 (1999), 129–140.
[8] Matveev M.V., A survey on star-covering properties, Topology Atlas, preprint No 330,

1998.
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