Article
Keywords:
$\beta\omega$; lonely point; weak P-point; irresolvable spaces
Summary:
In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal G}_\omega$ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745--748] to construct lonely points in $\omega^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega^*$, Topology Appl. 155 (2008), no. 16, 1766--1771.
References:
[2] Dow A., Gubbi A.V., Szymański A.:
Rigid Stone spaces within ZFC. Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748.
MR 0929014
[3] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[4] Frolík Z.:
Nonhomogeneity of $\beta P-P$. Comment. Math. Univ. Carolin. 8 (1967), 705–709.
MR 0266160
[7] Katětov M.:
On topological spaces containing no disjoint dense subsets. Mat. Sbornik N.S. 21(63) (1947), 3–12.
MR 0021679
[8] Kunen K.:
Weak $P$-points in $N^*$. Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749.
MR 0588822 |
Zbl 0435.54021
[9] van Mill J.:
Sixteen types in $\beta\omega-\omega$. Topology Appl. 13 (1982), 43–57.
MR 0637426
[11] Simon P.:
Applications of independent linked families. Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, pp. 561–580.
MR 0863940 |
Zbl 0615.54004