Previous |  Up |  Next

Article

Keywords:
$\beta\omega$; lonely point; weak P-point; irresolvable spaces
Summary:
In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal G}_\omega$ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745--748] to construct lonely points in $\omega^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega^*$, Topology Appl. 155 (2008), no. 16, 1766--1771.
References:
[1] van Douwen E.K.: Applications of maximal topologies. Topology Appl. 51 (1993), 125–139. DOI 10.1016/0166-8641(93)90145-4 | MR 1229708 | Zbl 0845.54028
[2] Dow A., Gubbi A.V., Szymański A.: Rigid Stone spaces within ZFC. Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748. MR 0929014
[3] Engelking R.: General Topology. Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[4] Frolík Z.: Nonhomogeneity of $\beta P-P$. Comment. Math. Univ. Carolin. 8 (1967), 705–709. MR 0266160
[5] Frolík Z.: Sums of ultrafilters. Bull. Amer. Math. Soc. 73 (1967), 87–91. DOI 10.1090/S0002-9904-1967-11653-7 | MR 0203676 | Zbl 0166.18602
[6] Hewitt E.: A problem of set-theoretic topology. Duke Math. J. 10 (19430), 309–333. DOI 10.1215/S0012-7094-43-01029-4 | MR 0008692 | Zbl 0060.39407
[7] Katětov M.: On topological spaces containing no disjoint dense subsets. Mat. Sbornik N.S. 21(63) (1947), 3–12. MR 0021679
[8] Kunen K.: Weak $P$-points in $N^*$. Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749. MR 0588822 | Zbl 0435.54021
[9] van Mill J.: Sixteen types in $\beta\omega-\omega$. Topology Appl. 13 (1982), 43–57. MR 0637426
[10] Rudin W.: Homogeneity problems in the theory of Čech compactifications. Duke Math. J. 23 (1956), 409–419. DOI 10.1215/S0012-7094-56-02337-7 | MR 0080902 | Zbl 0073.39602
[11] Simon P.: Applications of independent linked families. Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, pp. 561–580. MR 0863940 | Zbl 0615.54004
[12] Verner J.: Lonely points in $\omega^*$. Topology Appl. 155 (2008), no. 16, 1766–1771. DOI 10.1016/j.topol.2008.05.020 | MR 2445298 | Zbl 1152.54021
Partner of
EuDML logo