Previous |  Up |  Next

Article

Keywords:
generalized linear models; binary responses; statistical smoothing; statistical enhancing; maximum likelihood estimator; median estimator; consistency; asymptotic normality; efficiency; robustness
Summary:
The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported.
References:
[1] G. Adimari, L. Ventura: Robust inference for generalized linear models with application to logistic regression. Statist. Probab. Lett. 55 (2001), 4, 413-419. DOI 10.1016/S0167-7152(01)00157-2 | MR 1877646 | Zbl 0994.62062
[2] A. M. Bianco, V. J. Yohai: Robust estimation in the logistic regression model. In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994), pp. 17-34. Lecture Notes in Statist. 109 Springer, New York 1996. MR 1491394 | Zbl 0839.62030
[3] C. Croux, G. Haesbroeck: Implementing the Bianco and Yohai estimator for logistic regression. Computat. Statist. Data Anal. 44 (2003), 273-295. DOI 10.1016/S0167-9473(03)00042-2 | MR 2020151
[4] J. E. Dennis, Jr., R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey 1983. MR 0702023 | Zbl 0847.65038
[5] D. Gervini: Robust adaptive estimators for binary regression models. J. Statist. Plann. Inference 131 (2005), 297-311. DOI 10.1016/j.jspi.2004.02.006 | MR 2139374 | Zbl 1061.62036
[6] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York 1986. MR 0829458 | Zbl 0733.62038
[7] T. Hobza, L. Pardo, I. Vajda: Median Estimators in Generalized Logistic Regression. Research Report DAR-UTIA 2005/40. Institute of Information Theory, Prague 2005 (available at http://dar.site.cas.cz/?publication=1007)
[8] T. Hobza, L. Pardo, I. Vajda: Robust Median Estimators in Logistic Regression. Research Report DAR-UTIA 2006/31. Institute of Information Theory, Prague 2006 (available at http://dar.site.cas.cz/?publication=1089)
[9] T. Hobza, L. Pardo, I. Vajda: Robust median estimator in logistic regression. J. Statist. Plann. Inference 138 (2008), 3822-3840. DOI 10.1016/j.jspi.2008.02.010 | MR 2455970 | Zbl 1146.62015
[10] J. Jurečková, P. K. Sen: Robust Statistical Procedures. Wiley, New York 1996. MR 1387346 | Zbl 0862.62032
[11] N. Kordzakhia, G. D. Mishra, L. Reiersølmoen: Robust estimation in the logistic regression model. J. Statist. Plann. Inference 98 (2001), 211-223. DOI 10.1016/S0378-3758(00)00312-8 | MR 1860395
[12] F. Liese, I. Vajda: $M$-estimators of structural parameters in pseudolinear models. Appl. Math. 44 (1999), 245-270. DOI 10.1023/A:1023027929079 | MR 1698768 | Zbl 1060.62029
[13] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators I. Math. Methods Statist. 12 (2003) 454-477. MR 2054158
[14] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators II. Math. Methods Statist. 13 (2004) 82-95. MR 2078314 | Zbl 1185.62053
[15] P. McCullagh, J. A. Nelder: Generalized Linear Models. Chapman and Hall, London 1989. MR 0727836 | Zbl 0744.62098
[16] M. L. Menéndez, L. Pardo, M. C. Pardo: Preliminary test estimators and phi-divergence measures in generalized linear models with binary data. J. Multivariate Anal. 99 (2009), 10, 2265-2284. DOI 10.1016/j.jmva.2008.02.011 | MR 2463388 | Zbl 1154.62051
[17] J. Moré, G. Burton, H. Kenneth: User Guide for MINPACK-1. Argonne National Laboratory Report ANL-80-74, Argonne 1980.
[18] S. Morgenthaler: Least-absolute-deviations fits for generalized linear models. Biometrika 79 (1992), 747-754. DOI 10.1093/biomet/79.4.747 | Zbl 0850.62562
[19] J. Nagler: Scobit: An alternative estimator to logit and Probit. Amer. J. Political Sci. 38 (1994), 1, 230-255. DOI 10.2307/2111343
[20] D. Pregibon: Resistant lits for some commonly used logistic models with medical applications. Biometrics 38 (1982), 485-498. DOI 10.2307/2530463
[21] R. L. Prentice: A generalization of the probit and logit methods for dose-response curves. Biometrika 32 (1976), 761-768.
[22] P. J. Rousseeuw, A. Christmann: Robustness against separation and outliers in logistic regression. Comput. Statist. Data Anal. 43 (2003), 315-332. DOI 10.1016/S0167-9473(02)00304-3 | MR 1996815
Partner of
EuDML logo