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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 4 , PAGES 7 6 8 – 7 9 4

ROBUST MEDIAN ESTIMATOR FOR GENERALIZED
LINEAR MODELS WITH BINARY RESPONSES

Tomáš Hobza, Leandro Pardo and Igor Vajda

The paper investigates generalized linear models (GLM’s) with binary responses such as the
logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces
a median estimator of the underlying structural parameters of these models based on statisti-
cally smoothed binary responses. Consistency and asymptotic normality of this estimator are
proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned
models are presented. Finally some comments concerning a method called enhancement and
robustness of median estimator are given and results of simulation experiment comparing be-
havior of median estimator with other robust estimators for GLM’s known from the literature
are reported.

Keywords: generalized linear models, binary responses, statistical smoothing, statisti-
cal enhancing, maximum likelihood estimator, median estimator, consistency,
asymptotic normality, efficiency, robustness

Classification: 62F10, 62F12, 62F35

1. INTRODUCTION AND BASIC CONCEPTS

Let Y1, . . . , Yn be independent Bernoulli random variables with parameters π1, . . . , πn,

Y1 ∼ Be(π1), . . . , Yn ∼ Be(πn).

We assume that the Bernoulli parameters πi = Pr(Yi = 1) = EYi ∈ (0, 1) are predictable
by means of unknown structural parameters β0 = (β01, . . . , β0d)

T and explanatory vari-
ables xT

i = (xi1, . . . , xid) , 1 ≤ i ≤ n, through the linear predictor

g (πi) =
d∑

j=1

xijβ0j , 1 ≤ i ≤ n (1)

for a given monotone function g(π) : (0, 1) 7−→ R. So we consider generalized linear
models (GLM’s) with binary responses and link functions g(π). In the sequel we restrict
ourselves to the strictly monotone and infinitely differentiable link functions and we use
the inverse link functions π(t) = g−1(t) : R 7−→ (0, 1) which are strictly monotone and
infinitely differentiable too and satisfy the relation

πi = π(xT
i β0)

∆= πi(β0), 1 ≤ i ≤ n. (2)
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A wide choice of GLM’s is available. Some of the most interesting are the following:

a) Logistic model. In this model π (t) is the standard logistic distribution function,

π (t) =
et

1 + et
and g(π) = ln(π/(1− π)). (3)

b) Probit model. Here π (t) is the standard normal distribution function,

π (t) = Φ(t) and g(π) = Φ−1(π). (4)

c) Log-log model. In the log-log model π (t) is the reflected standard Gumbel distri-
bution function G(−t) = 1−G(t), i. e.,

π (t) = exp(− exp t) and g(π) = − ln(− lnπ). (5)

d) Complementary Log-log model. In this model π (t) is the standard Gumbel distri-
bution function,

π (t) = 1− exp(− exp t) and g(π) = ln(− ln(1− π)). (6)

e) Scobit model. In this model

π (t) = 1− (1 + et)−λ and g(π) = ln((1− π)−1/λ − 1), λ > 0. (7)

f) Power logit model. In this model

π (t) = (1 + e−t)−λ and g(π) = ln
(

1
π−1/λ − 1

)
, λ > 0. (8)

For more details about these GLM’s see p. 108 in McCullagh and Nelder [15], Menéndez
et al. [16] and references therein. For Scobit and Power logit models see Nagler [19] and
Prentice [21], respectively.

The main purpose of this paper is the estimation of the parameter β0 ∈ Rd in the
GLM considered in (1). The maximum likelihood estimator(MLE), βn = βn (Y1, . . . , Yn)
is obtained by

βn = arg min
n∑

i=1

di (β) (9)

being
di (β) = −Yi lnπi (β)− (1− Yi) ln (1− πi (β)) . (10)

In Hobza et al. [9] was established the undesired influence of contaminations in the
MLE in Logistic Regression Models. It is easy to observe that the arguments given
in Hobza et al. [9] for the logistic regression model are valid to observe the undesired
influence of contaminations in the MLE in GLM. In order to overcome the problem many
different estimators, for the logistic regression model, have been introduced and studied.
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See, Pregibon [20], Morgenthaler [18], Bianco and Yohai [2], Croux and Haesbroeck
[3], Kordzakhia et al. [11], Adimari and Ventura [1], Rousseeuw and Christmann [22],
Gervini [5], Hobza et al. [9]. The problem in GLM’s has not been studied in the same
way.

In this paper we propose a new robust M -estimator of the parameter β0 ∈ Rd in
GLM’s with binary responses obtained by application of the classical robust L1-method
(cf. Hampel et al. [6], Jurečková and Sen [10] or Zwanzig [23]) to the continuous
responses

Zi = Yi + Ui, 1 ≤ i ≤ n (11)

obtained by adding mutually and on Yi independent U(0, 1)-distributed (i. e. uniformly
on (0, 1) distributed) random variables Ui to the original above introduced binary re-
sponses

Yi ∼ Be
(
π

(
xT

i β0

))
. (12)

In other words, we define the estimator

β̂n = arg min
β

n∑
i=1

∣∣Zi −m
(
π

(
xT

i β
))∣∣ (13)

for Zi given by (11), (12) and for the median function

m (p) = F−1
p (1/2) = inf {z ∈ R : Fp (z) ≥ 1/2}

corresponding to the class of distribution functions Fp of the random variables

Z = Be (p) + U(0, 1)

when the parameter p varies in the interval (0, 1). Obviously, for each p ∈ (0, 1) and
z ∈ R

Fp (z) = (1− p) zI (0 < z ≤ 1) + (1− 2p+ pz)) I (1 < z ≤ 2) + I (z > 2) (14)

and the median function has the explicit form

m(p) = 1 +
p− 1/2

p ∨ (1− p)
, 0 < p < 1. (15)

Here and in the rest of the paper we use the notation

a ∨ b = max {a, b} and a ∧ b = min {a, b} .

In the following we shall call the estimator defined in (13) by Med-estimator.

Median function m(p) defined by the continuous random variables Z = Be (p) +
U(0, 1) is strictly increasing in p ∈ [0, 1]. Since the function π(t) is assumed to be strictly
monotone, the argument m

(
π

(
xTβ

))
in (13) detects every change of the product xTβ.

Contrary to this, the median function m̃(p) defined in a similar manner by the discrete
random variables Y = Be(p) themselves is piecewise constant in p ∈ (0, 1) so that
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m̃
(
π

(
xTβ

))
is insensitive to small variations of the product xTβ. Therefore the robust

L1-estimation cannot be applied directly to the GLM responses Yi, i. e., the estimator

β̃n = arg min
β

n∑
i=1

∣∣Yi − m̃
(
π

(
xT

i β
))∣∣

is not of a too much practical interest.
In the next section we shall prove the consistency as well as the asymptotic normality

of the Med-estimator.

2. ASYMPTOTIC THEORY

In this section we study the asymptotics of the Med-estimator β̂n from (13) which
estimates the true parameters β0 ∈ Rd of the GLM using the statistically smoothed
responses

Zi = Yi + Ui ∼ Fπ(xT
i β0) (z) (cf. (11))

to the regressors xi where π : R 7−→ (0, 1) is strictly monotone and infinitely differen-
tiable, and Fp (z) is given by (14).

Our results are based on what Liese and Vajda [12, 13, 14] proved concerning the
general median estimators

β̂n = arg min
β

n∑
i=1

∣∣Zi −m
(
u

(
xT

i β
))∣∣ (16)

for a given function m : Θ 7→ R of parameters β0 in the general statistical model

Zi ∼ Fu(xT
i β0) (z) , 1 ≤ i ≤ n, (17)

being u : R → Θ a smooth mapping and Fθ, θ ∈ Θ ⊂ R is a family of distribution
functions on R.

We shall study and adapt to the present estimators (13) the following conditions
(c1) – (c8) for consistency and asymptotic normality established by these authors.

(c1) The fixed regressors x1, x2, . . . are from a compact set X ⊂ Rd and the probability
measures

Qn =
1
n

n∑
i=1

δxi (18)

tend weakly for n→∞ to a probability measure Q on Borel subsets of X .

We can observe that if the regressors x1, x2, . . . ,xn are independently generated
by a probability measure Q on the Borel subsets of a compact set X ⊂ Rd then (c1)
holds almost surely for these X and Q. For example, if the dimension d = 1 then, by
the Glivenko theorem, the empirical probability measure (18) tends almost surely to
Q in the Kolmogorov distance. But the convergence in this distance implies the weak
convergence required by (c1).
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(c2) The smallest eigenvalue of the matrix

Σ =
∫
X
xxT dQ (x) (19)

is positive. Hence for every β ∈ Rd different from β0

Q
(
x ∈X : xT (β − β0) 6= 0

)
> 0. (20)

The following conditions (c3) – (c5) obviously hold for the distribution functions Fp(z)
under consideration and their densities

fp (z) = (1− p) I (0 < z ≤ 1) + pI (1 < z < 2) , z ∈ R. (21)

(c3) Distributions functions Fp (z) are continuous in both arguments p ∈ (0, 1) and
z ∈ (0,∞) . Moreover, for each p ∈ (0, 1)∫ +∞

−∞
|z| fp (z) dz =

1
2

+ p <∞. (22)

(c4) Distributions functions Fp, p ∈ (0, 1) are increasing on interval [0, 2] ⊆ R in the
strict sense

Fp (z1) < Fp (z2) for z1 < z2 from [0, 2] (23)

and constant on the complement R−[0, 2].

(c5) Distributions functions Fp, p ∈ (0, 1) are stochastically ordered in the sense that
for every 0 < p1 < p2 < 1 and z ∈ R it holds Fp1 (z) ≥ Fp2 (z) where

Fp1 (z) > Fp2 (z) if z ∈ [0, 2]. (24)

The present conditions (c1) – (c5) imply the assumptions (E1+), (E2), (EM1), (EM2)
and (M1) – (M4) of Theorem 2 and Lemmas 8 and 9 in Liese and Vajda [12]. For a
detailed proof of this assertion we refer to Section 3 of Hobza et al [7]. We shall check
that in our model hold also the following less evident conditions of consistency and
asymptotic normality.

(c6) For every 0 < p1 < p2 < 1 there exists a > 0 such that the densities (21) and the
median function m (p) satisfy the condition

Λ (a) ≡ inf
|y|≤a

(
inf

p1≤p≤p2
fp (m (p) + y)

)
> 0. (25)

(c7) The quantile function m (p) is differentiable on (0, 1) and the derivative m′(p) is
locally Lipschitz in the sense that for every p0 ∈ (0, 1)

|m′ (p)−m′ (p0)| ≤ 2 |p− p0| .
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(c8) The densities (21) satisfy for every 0 < p1 < p2 < 1 the condition

lim
y→0

sup
p1≤p≤p2

|fp (m (p) + y)− fp (m (p))| = 0. (26)

It is not difficult to establish, in a similar way to that in Lemma 2.1 in Hobza et
al. [9], that in the present model the conditions (c6) – (c8) hold.

The median function m (p) of (15) is bounded on [0, 1]. By Lemma 8 in Liese and
Vajda [12], this means that the sufficient condition of Lemma 9 ibid. reduces to (20)
assumed in (c2). Hence, by Theorem 2 and Lemmas 8, 9 in Liese and Vajda [12], under
(c1) – (c5) our Med-estimator β̂n consistently estimates the true β0 ∈ Rd provided the
measure Q of (c1) defines the function

m (β) =
∫

R

∫
X

∣∣y − ϕ
(
xTβ

)∣∣ dFπ(xT β) (y) dQ (x) for ϕ(t) = m(π(t)) (27)

of variable β ∈ Rd satisfying for every ε > 0 the condition

inf
‖β−β0‖≥ε

m (β) >m (β0) (28)

of identifiability of true parameters β0. This important fact will be used in the proof of
the following theorem.

Theorem 2.1. If the regressors of the model under consideration satisfy (c1), (c2) then
the Med-estimator β̂n consistently estimates the model parameters β0.

P r o o f . By what was said above, (c1) – (c8) hold. It suffices to prove that then (28)
holds as well. Put for ϕ of (27)

∆ = ∆ (x,β) = ϕ
(
xTβ0

)
− ϕ

(
xTβ

)
(29)

and
η = ξ − ϕ

(
xTβ0

)
,

being ξ a random variable with density function fπ(xT β0)
(y) defined in (21). Then the

density of η evaluated at point z is

gx (z) = fπ(xT β0)

(
z + ϕ

(
xTβ0

))
, z ∈ R,

and

m (β)−m (β0) =
∫
X

[
w

(
xTβ

)
− w

(
xTβ0

)]
dQ (x) (30)

for
w

(
xTβ

)
= E

∣∣ξ − ϕ
(
xTβ

)∣∣
= E |η + ∆ (x,β)| (cf. (29)) .
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The difference
w

(
xTβ

)
− w

(
xTβ0

)
= E (|η + ∆ (x,β)| − |η|) (31)

will be estimated by using the generalized Taylor formula

|η + ∆| − |η| = D+ |η|∆ +R (η,∆) (32)

valid for all real ∆ where

D+ |z| = I (0 ≤ z <∞)− I (−∞ < z < 0) (33)

is the right-hand derivative of the function |z| for z ∈ R and

R (z,∆) =
{

2(∆ + z) · I (−∆ < z < 0) , for ∆ > 0;
−2(∆ + z) · I (0 < z < −∆) , for ∆ < 0,

is a remainder in the formula (32). This follows from the generalized Taylor expansion
of arbitrary convex function established in (3.3) of Liese and Vajda [13] and the formula
(3.6) ibid. for the remainder. Since med(η) = 0, it holds ED+ |η| = 0. Therefore, from
(31) and (32), we get for ∆ > 0

w
(
xTβ

)
− w

(
xTβ0

)
= ER (η,∆)

=
∫

2 (z + ∆) I (−∆ < z < 0) gx (z) dz

= 2
∫ ∆

0

(∆− z) gx (−z) dz

= 2
∫ ∆

0

(∆− z) fπ(xT β0)

(
ϕ

(
xTβ0

)
− z

)
dz.

It is not difficult to see, using the corresponding form of the remainder R (z,∆), that
the same formula is obtained also for ∆ < 0 . Since X ⊂ Rd is bounded, the values

p1 = inf
x∈X

π
(
xTβ0

)
and p2 = sup

x∈X
π

(
xTβ0

)
are bounded away from 0 and 1. Thus, taking into account that ϕ

(
xTβ0

)
= m

(
π

(
xTβ0

))
,

we see from (c6) that we can find a > 0 such that

inf
|z|≤a

inf
x∈X

fπ(xT β0)

(
ϕ

(
xTβ0

)
− z

)
≥ Λ (a) > 0.

This implies that if 0 < b < a then for every |∆ (x,β)| > b it holds

w
(
xTβ

)
− w

(
xTβ0

)
≥ b2Λ (a) .

Hence, by (30), for every 0 < b < a we get

m (β)−m (β0) ≥ b2Λ (a)Q (Xb,β) (34)
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for the subset of regressors

Xb,β = { x ∈X : |∆ ( x,β)| ≥ b} .

By (c2), the smallest eigenvalue λ (Σ) of the matrix (19) is positive. Further, for every
τ > 0

λ (Σ) ‖β − β0‖
2 ≤ (β − β0)

T Σ (β − β0)

=
∫
X

(
xT (β − β0)

)2
dQ (x)

≤ ‖X‖ . ‖β − β0‖
2
Q

(
X 0

τ,β

)
+ τ2

where ‖X‖ stands for max ‖x‖ on X and X 0
τ,β =

{
x ∈X :

∣∣xT(β − β0)
∣∣ > τ

}
. From

here we see that for all ε > 0 and all sufficiently small τ > 0

ψ (τ, ε) ≡ inf
‖β−β0‖≥ε

Q
(
X 0

τ,β

)
> 0. (35)

It follows from the strict monotonicity and continuity of the functions m(p) and π(t)
that ϕ (t) of (27) is strictly monotone and continuous on R. Therefore the function

φ (τ) ≡ inf
|t|≤‖X‖.‖β0‖
|s−t|≥τ

|ϕ (s)− ϕ (t)|

is positive in the domain τ > 0 and, obviously,

Xφ(τ),β ⊇ X 0
τ,β.

Since ϕ (t) is continuous, it holds φ (τ) < a for all sufficiently small τ > 0. Consequently
(34) implies for any ε > 0

inf
‖β−β0‖≥ε

[m (β)−m (β0)] ≥ φ (τ)2Λ (a) inf
‖β−β0‖≥ε

Q
(
Xφ(τ),β

)
≥ φ (τ)2Λ (a) inf

‖β−β0‖≥ε
Q

(
X 0

τ,β

)
= φ (τ)2Λ (a)ψ (τ, ε) .

By (35), the last product is positive which proves the desired relation (28). �

Theorem 2.2. Let in the model under consideration the derivative g′(π) of the link
function be bounded away from zero on (0, 1) and the regressors satisfy (c1), (c2). If
the limit matrix Q in (38) is positive definite then the Med-estimator β̂n of the model
parameters β0 is asymptotically normal in the sense that

√
n

(
β̂n − β0

)
L−→

n→∞
N

(
0, Q−1ΣQ−1

)
(36)

for Σ given by (37) and Q given by (38).
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P r o o f . The function ϕ of (27) is continuously differentiable with the derivative ϕ′ (t) =
m′(π (t))π′ (t) . From now on we shall assume that the derivative g′(π) of the link function
is bounded away from zero on (0, 1). This is equivalent to the assumption that the
derivative π′ (t) is bounded on R. Since m′(p) is bounded on (0, 1), this implies that
ϕ′ (t) is bounded on R. Let us introduce the notation

∆i (β) = ϕ
(
xT

i β0

)
− ϕ

(
xT

i β
)
, β ∈ Rd,

ηi = ξi − ϕ
(
xT

i β0

)
, i = 1, 2, . . . ,

where ξi is a random variable with density function fπ(xT
i β0)(y). Therefore

f̃i (z) =π(xT
i β0)

(
z + ϕ

(
xT

i β0

))
, z ∈ R,

is the probability density function of ηi. The functions ∆i (β) are continuously differen-
tiable on Rd with gradients

grad (∆i (β)) = −ϕ′
(
xT

i β
)
xi.

Therefore the linear term Ln (h) considered in (2.3) of Liese and Vajda [14] is given here
by

Ln (h) = − 1√
n

n∑
i=1

D+ |ηi|ϕ′
(
xT

i β
)
xT

i h, h ∈ Rd,

where D+ |z| denotes the right-hand derivative (33). Since ED+ |ηi| = 0, the variance
of Ln (h) is hT Σnh for the matrix given in accordance with (2.5) of Liese and Vajda
[14] by

Σn =
1
n

n∑
i=1

E
(
D+ |ηi|

)2 (
ϕ′

(
xT

i β
))2

xix
T
i .

But E (D+ |ηi|)
2 = 1 so that we can write the matrix Σn in the integral form

Σn =
∫
X

(
ϕ′

(
xTβ

))2
xTxdQn (x)

where Qn is the empirical measure from (c1). Since ϕ′
(
xTβ

)
is continuous and bounded

on X , it holds

lim
n→∞

Σn = Σ ≡
∫
X

(
ϕ′

(
xTβ

))2
xTxdQ (x) (37)

where Q is the limit measure from (c1).

The next step is evaluation of the matrices

Qn =
1
n

n∑
i=1

gi (0)∇ϕ
(
xT

i β0

) (
∇ϕ

(
xT

i β0

))T
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where gi (t) denote derivatives of the functions Gi (t) = ED |ηi + t| of variable t ∈ R
introduced on p. 467 in Liese and Vajda [13]. By the definition of D+ |z| in (33), for
πi = π

(
xT

i β0

)
and ϕi = ϕ

(
xT

i β0

)
Gi (t) = EI (ηi + t > 0)− EI (ηi + t ≤ 0)

= EI (ξi > ϕi − t)− EI (ξi ≤ ϕi − t)
= 1− 2Fπi (ϕi − t) .

Thus gi (t) = 2fπi (ϕi − t) and

gi (0) = 2fπ(xT
i β0)

(
ϕ

(
xT

i β0

))
.

Therefore the matrices Qn may be represented as the integrals

Qn = 2
∫
X
fπ(xT β0)

(
ϕ

(
xTβ0

)) (
ϕ′

(
xTβ0

))2
xTxdQn (x) .

Since ϕ′
(
xT

i β0

)
is continuous and bounded on X and, by (c8), the function

fπ(xT β0)

(
ϕ

(
xTβ0

))
= fπ(xT β0)

(
m

(
π

(
xTβ0

)))
is continuous and bounded on X too, it holds

lim
n→∞

Qn = Q ≡ 2
∫
X
fπ(xT β0)

(
ϕ

(
xTβ0

)) (
ϕ′

(
xTβ0

))2
xTxdQ (x) . (38)

Finally, D+ρ (ηi) = D+ |ηi| is in the present situation bounded and ∇fi (β0)
= grad (∆i (β0)) = −ϕ′

(
xT

i β0

)
xi is bounded uniformly for all possible xi ∈ X . Con-

sequently the Liapunov condition (2.6) of Liese and Vajda [14] holds. Similarly, one can
verify that the conditions (C3), (C4) of Liese and Vajda [13] as well as (2.39), (2.40)
ibid. hold. Thus, by Lemma 3 in Liese and Vajda [13], (C5) and (C6) ibid. hold too.
However, this allows to go a step further and conclude that if (c1), (c2) hold then all
assumptions of Theorem 1 in Liese and Vajda [14] are satisfied. That theorem implies
the enunciated result. �

3. ASYMPTOTIC DISTRIBUTION FOR SOME GENERALIZED LINEAR
MODELS

In this section we shall obtain the expression of matrices Σ and Q for the generalized
linear models considered in Section 1.

3.1. Logistic regression model

Let us consider the logistic regression model of (3). In this model we get from (27)

ϕ (t) =


3
2
− e−t

2
if t ≥ 0

1
2

+
et

2
if t < 0 .
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It is clear that

ϕ′ (t) =
e−|t|

2
if t ∈ R

and

fπ(t) (ϕ (t)) = π (t) ∨ (1− π (t))

=
1

1 + e−t
∨ 1

1 + et
=

1
1 + e−|t|

=
e|t|

1 + e|t|
.

Therefore,

fπ(t) (ϕ (t)) (ϕ′ (t))2 =
e−|t|

4
(
1 + e|t|

)
and one obtains from (37) and (38)

Σ =
1
4

∫
X
e−2|xT β0|xxT dQ(x) (39)

and

Q =
1
2

∫
X

e−|x
T β0|

1 + e|xT β0|
xxT dQ(x). (40)

Thus in the logistic regression model Theorem 2.2 holds with Σ and Q given by (39)
and (40).

For more details about this model as well as the expressions of Σ and Q for the
univariate logistic regression model see Hobza et al. [9].

3.2. Probit model

Let us now consider the probit model of (4). In this model (27) implies

ϕ (t) =


2− 1

2Φ(t)
if t ≥ 0

1
2

1
Φ(−t)

if t < 0 .

Therefore

ϕ′ (t) =
1√
8π

· e−t2

Φ2(|t|)
if t ∈ R.

Further
fπ(t) (ϕ (t)) = π (t) ∨ (1− π (t)) = Φ(t) ∨ Φ(−t) = Φ(|t|) .

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2 =
1
8π

· e−t2

Φ3(|t|)
and one obtains from (37) and (38)

Σ =
1
8π

∫
X

e−(xT β0)
2

Φ4 (|xTβ0|)
xxT dQ(x) (41)
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and

Q =
1
4π

∫
X

e−(xT β0)
2

Φ3 (|xTβ0|)
xxT dQ(x) . (42)

Thus in the probit model Theorem 2.2 holds with Σ and Q given by (41) and (42).

3.3. Log-Log model

Now we consider the log− log model of (5). In this model (27) implies

ϕ (t) =


1
2
· eet

eet − 1
if t ≥ ln(ln 2)

2− 1
2
eet

if t < ln(ln 2) .

Therefore

ϕ′ (t) =

 −1
2
· et+et

(eet − 1)2
if t ≥ ln(ln 2)

−1
2
et+et

if t < ln(ln 2) .

In the same way as in the previous models we get

fπ(t) (ϕ (t)) =

{
1− e−et

if t ≥ ln(ln 2)
e−et

if t < ln(ln 2) .

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2 =


1
4
e2t+et

(
eet − 1

)−3

if t ≥ ln(ln 2)

1
4
e2t+et

if t < ln(ln 2)

and one obtains from (37) and (38)

Σ =
1
4

∫
X

exp
(
2xTβ0 + 2 exp (xTβ0)

)
·
[
I

(
xTβ0 < ln ln 2

)
+

(
exp(exp (xTβ0))− 1

)−4
I

(
xTβ0 ≥ ln ln 2

)]
xxT dQ(x) (43)

and

Q =
1
2

∫
X

exp
(
2xTβ0 + exp (xTβ0)

)
·
[
I

(
xTβ0 < ln ln 2

)
+

(
exp(exp (xTβ0))− 1

)−3
I

(
xTβ0 ≥ ln ln 2

)]
xxT dQ(x) . (44)

Thus in the log-log model Theorem 2.2 holds with Σ and Q given by (43) and (44).



780 T. HOBZA, L. PARDO AND I. VAJDA

3.4. Complementary Log-Log model

We consider the complementary log− log model of (6). In this model (27) implies

ϕ (t) =

 2− 1
2
· eet

eet − 1
if t ≥ ln(ln 2)

1
2
eet

if t < ln(ln 2) .

Therefore

ϕ′ (t) =


1
2
· et+et

(eet − 1)2
if t ≥ ln(ln 2)

1
2
et+et

if t < ln(ln 2) .

Further, we get

fπ(t) (ϕ (t)) =

{
1− e−et

if t ≥ ln(ln 2)
e−et

if t < ln(ln 2) .

From the last formulas it follows that in the complementary log-log model Theorem 2.2
holds with Σ and Q given by the same formulas (43) and (44) as in the case of the
log-log model.

3.5. Scobit model

Let us study the Scobit model of (7). In this model it holds

ϕ (t) =


3
2
− 1

2
· 1
(1 + et)λ − 1

if t ≥ ln(21/λ − 1)

1
2
(1 + et)λ if t < ln(21/λ − 1) .

Therefore

ϕ′ (t) =


λ

2
(1 + et)λ−1et

[
(1 + et)λ − 1

]−2 if t ≥ ln(21/λ − 1)

λ

2
(1 + et)λ−1et if t < ln(21/λ − 1) .

In the same way as in the previous models we get

fπ(t) (ϕ (t)) =
{

1− (1 + et)−λ if t ≥ ln(21/λ − 1)
(1 + et)−λ if t < ln(21/λ − 1) .

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2 =


λ2

4
(1 + et)λ−2e2t

[
(1 + et)λ − 1

]−3 if t ≥ ln(21/λ − 1)

λ2

4
(1 + et)λ−2e2t if t < ln(21/λ − 1) ,
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and one obtains from (37) and (38)

Σ =
λ2

4

∫
X

(
1 + ex

T β0

)2λ−2

e2x
T β0 ·

[
I

(
xTβ0 < ln(21/λ − 1)

)
+

((
1 + ex

T β0

)λ

− 1
)−4

I
(
xTβ0 ≥ ln(21/λ − 1)

)]
xxT dQ(x) (45)

and

Q =
λ2

2

∫
X

(
1 + ex

T β0

)λ−2

e2x
T β0 ·

[
I

(
xTβ0 < ln(21/λ − 1)

)
+

((
1 + ex

T β0

)λ

− 1
)−3

I
(
xTβ0 ≥ ln(21/λ − 1)

)]
xxT dQ(x) . (46)

Thus in the Scobit model Theorem 2.2 holds with Σ and Q given by (45) and (46).

3.6. Power logit model

Finally, let us suppose the Power logit model of (8). In this model it holds

ϕ (t) =


2− 1

2
(1 + e−t)λ if t ≥ − ln(21/λ − 1)

1
2

1
1− (1 + e−t)−λ

if t < − ln(21/λ − 1) .

Therefore

ϕ′ (t) =


λ

2
(1 + e−t)λ−1e−t if t ≥ − ln(21/λ − 1)

λ

2
(1 + e−t)λ−1e−t

[
(1 + e−t)λ − 1

]−2 if t < − ln(21/λ − 1) .

In the same way as in the previous models we get

fπ(t) (ϕ (t)) =
{

(1 + e−t)−λ if t ≥ − ln(21/λ − 1)
1− (1 + e−t)−λ if t < − ln(21/λ − 1) .

Consequently,

fπ(t) (ϕ (t)) (ϕ′ (t))2 =


λ2

4
(1 + e−t)λ−2e−2t if t ≥ − ln(21/λ − 1)

λ2

4
(1 + e−t)λ−2e−2t

[
(1 + e−t)λ − 1

]−3 if t < − ln(21/λ − 1) ,

and one obtains from (37) and (38)

Σ =
λ2

4

∫
X

(
1 + e−x

T β0

)2λ−2

e−2xT β0 ·
[
I

(
xTβ0 ≥ − ln(21/λ − 1)

)
+

((
1 + e−x

T β0

)λ

− 1
)−4

I
(
xTβ0 < − ln(21/λ − 1)

)]
xxT dQ(x) (47)
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and

Q =
λ2

2

∫
X

(
1 + e−x

T β0

)λ−2

e−2xT β0 ·
[
I

(
xTβ0 ≥ − ln(21/λ − 1)

)
+

((
1 + e−x

T β0

)λ

− 1
)−3

I
(
xTβ0 < − ln(21/λ − 1)

)]
xxT dQ(x) . (48)

Thus in the Scobit model Theorem 2.2 holds with Σ and Q given by (47) and (48).

4. ROBUSTNESS

The application of median estimator to generalized linear models with binary responses
was motivated by its familiar robustness in continuous regression models. So there was
a hope it will be robust too. The Med-estimator is in this respect compared with several
robust estimators known from the previous literature. Let us start with description of
the compared estimators.

• Morgenthaler estimator

The first robust estimator included in the simulation study was proposed by Mor-
genthaler [18] and is defined as the solution of the equations

n∑
i=1

ψ (Yi,xi,β) = 0 (49)

for the function ψ : R2d+1 → Rd given by the formula

ψ (Y,x,β) =
√
π (xTβ) (1− π (xTβ))

(
Y − π

(
xTβ

))
x. (50)

This estimator is called briefly Morg-estimator in the sequel.

• Bianco–Yohai estimator

The second one is the M -estimator introduced by Bianco and Yohai [2] and defined
as minimizer

βn = arg min
n∑

i=1

φ
(
Yi, π

(
xT

i β
))

(51)

for
φ

(
Yi, π

(
xT

i β
))

= % (di (β)) + %0

(
π

(
xT

i β
))

(52)

where di (β) are the deviances (10) of individual observations Yi, % (t) is bounded
function specified by

% (0) = 0 and %′ (t) = (1− t) I (0 < t < 1) (53)

and the compensator function %0 is of the form

%0 (p) = %1 (p) + %1 (1− p) (54)
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for %1 depending on % by the formula

%1 (p) =
∫ p

0

%′ (− ln t) dt, p ∈ (0, 1) . (55)

This M -estimator is called briefly BY-estimator in the sequel.

• Croux–Haesbroeck estimator

Croux and Haesbroeck [3] proposed an alternative estimator from the general
Bianco–Yohai class defined by the formulas (51), (52) obtained for modified func-
tion % (t) satisfying

% (0) = 0 and %′ (t) = e−
√

1/2I (0 < t < 1/2) + e−
√

tI (t ≥ 1/2) . (56)

This particular M -estimator is called CH-estimator in the sequel

• Enhanced median estimator

As illustrated in Example 2.1 of Hobza et al. [9], application of the L1- estima-
tors (13) in discrete statistical models with observations Yi, 1 ≤ i ≤ n, statis-
tically smoothed into the continuous form (11) is usually accompanied by a loss
of efficiency achievable in the original discrete models. This subefficiency can be
suppressed to some extent by the method of enhancing introduced in Hobza et al.
[8, 9]. It consists in replacing the set of statistically smoothed data Zi = Yi + Ui,
1 ≤ i ≤ n by the expanded set obtained by considering for k > 1 the matrix of
data

Zij = Yi + Uij , 1 ≤ i ≤ n, 1 ≤ j ≤ k, (57)

where Uij are U (0, 1)-distributed and mutually as well as on Y1, . . . , Yn indepen-
dent random variables, and applying the L1-estimator to this expanded set. If a
method of processing the data Z1, . . . , Zn is statistically optimal in an appropriate
sense, then its performance cannot be improved by expanding the sufficient statis-
tic (Z1, . . . , Zn). On the other hand, if the method is suboptimal, like for example
the median estimator of the above mentioned Example 2.1, then its performance
can be improved by using the expanded data set (57). In some cases the efficiency
of the median estimator can even reach asymptotically the efficiency of the MLE
estimates. For more details concerning enhancement we refer to Hobza et al. [8, 9].

In the following we shall call the estimator obtained by applying the Med-estimator
(13) to the expanded data set (57) by k-Med-estimator.

An extensive simulation study comparing properties of Med-estimator, Morg-estimator,
BY-estimator and CH-estimator under the logistic regression model was done in Hobza
et al. [8] and reported also in Hobza et al. [9]. The results show the robustness of the
median estimators by demonstrating their low sensitivity to high leverage points and also
by demonstrating that they outperform the above mentioned classical robust estimators
in certain special situations (e. g. heavy contaminations and large sample sizes). The
conclusions are based partly on simulations in the models used in the previous literature
for mutual comparison of various estimators in logistic regression.
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In the present paper we present a new simulation study in order to see if the con-
clusions concerning robustness obtained in the above cited work for logistic regression
models remains valid also in other GLM’s. We are going to present the results for probit
models but they continue being valid in other models.

4.1. Simulation experiment

The robustness is compared by means of simulated performances of all selected estima-
tors in the probit models Be

(
π

(
xTβ0

))
ε-contaminated at the levels 0 ≤ ε ≤ 0.3 by

the alternative data source Be
(
1− π

(
xTβ0

))
, or contaminated at the same levels ε by

the leverage points from probit models Be(π(x̃Tβ0)) with strongly distorted regressors
x̃ at the place of x.

The first data source is very similar to the one used previously by Bianco and Yohai [2]
to demonstrate experimentally the robustness of their BY-estimator in logistic regression
which was modified slightly to the probit regression. The simulated data Y1, . . . , Yn are
generated by the contaminated probit source

Yi ∼ (1− ε)Be
(
π

(
xT

i β0

))
+ εBe

(
1− π

(
xT

i β0

))
, (58)

where π (t) is the standard normal distribution function (cf. (4)), xi are the concrete
regressors

xi = (xi0 ≡ 1, xi1 ∼ N(0, 1))T (59)

and β0=(β00, β01)
T = (−1.87, 2.0)T are the true parameters leading to the probability

Pr (Yi = 1) ≡ Eπ
(
xT

i β0

)
= 0.2 . (60)

In the second case of the leverage points the simulated data Y1, . . . , Yn are generated
by the source

Yi ∼ (1− ε)Be
(
π

(
xT

i β0

))
+ εBe

(
π

(
x̃T

i β0

))
(61)

with the same regressors xi and true parameters β0 as used in (58), but with the
regressors x̃i different, given by the formula

x̃i =
(

1, x̃i1 = β00 + 3sign
[
−β00

β01
− xi1

]
β01

)
, xi1 ∼ N(0, 1), (62)

and characterized by the property

π
(
xT

i β0

)
> 1/2 implies π

(
x̃T

i β0

)
≈ 0

and
π

(
xT

i β0

)
≤ 1/2 implies π

(
x̃T

i β0

)
≈ 1.

In all cases the results presented in Tables 1 – 6 are based on 1000 simulated re-

alizations β̃
(l)

n = (β̃(l)
n0 , β̃

(l)
n1)T of an estimator β̃n = (β̃n0, β̃n1)T of true parameters

β0=(β00, β01)
T
. These realizations have been used to evaluate the mean absolute errors

MAE =
1

2000

1000∑
l=1

(∣∣∣β̃(l)
n0 − β00

∣∣∣ +
∣∣∣β̃(l)

n1 − β01

∣∣∣) (63)
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and also the rejection rates RR specifying for each selected estimator the percentage of
the data vectors Y1, . . . , Yn rejected during evaluation of the desired 1000 realizations.
The data vector is rejected and replaced by a new independent realization if numerical
evaluation of one of the assumed estimators fails. For the sake of completeness, we have
included in the tables also results for the MLE.

The estimates β̃
(l)

n = (β̃(l)
n0 , β̃

(l)
n1)T were evaluated numerically in accordance with the

definition of each corresponding estimator given above, using the iteration procedures
presented in the IMSL C Numerical Libraries, version 3.0. The minimization of a func-
tion of two variables uses there a quasi-Newton method (for details see Appendix A of
Dennis and Schnabel [4]), and systems of equations are solved using a modified Powell
hybrid algorithm (for further description see Moré et al. [17]). The initial iteration
seeds for the MLE βn = (βn0, βn1)T were the true parameters β0=(β00, β01)

T and the
initial iteration seeds for all the remaining estimates β̃n = (β̃n0, β̃n1)T were the MLE’s
βn = (βn0, βn1)T .

We observe that the results presented in the Tables 1 and 2 follow basically the same
pattern. From the first uncontaminated (ε = 0) sector of the tables one can see that the
best behavior has the MLE estimator except for the case of n = 50 observations where
the BY-estimator is the preferred one .

From the ε-contaminated sectors of the Tables 1 and 2 it follows that for small sample
sizes (n = 50, 100) the best results are obtained alternately for Morg- and BY-estimators.
However the main message of the tables is that for larger sample sizes (n = 500, 1000) our
Med-estimator or its k-enhanced version better resists to higher levels of contamination
or distortion by leverage points than the remaining four estimators known from the
previous literature.

From the sectors corresponding to n = 500, 1000 and ε = 0, 0.05 one can also observe
how the method of k-enhancing can improve the behavior of the Med-estimator. For
higher levels of contamination this is not true but on the other hand the enhancing does
not make the behavior of the Med-estimator much worse so that for these sample sizes
(around n ≈ 500) the use of the k-enhancing for k ≈ 10 can be recommended.

The above introduced MAE represents in some sense an overall measure of estimates
precision. In order to distinguish a bias and a variability of an estimator and to single
out the performance of an estimator of slope and of an estimator of intercept we present
in Tables 3 – 6 also the following measures based on the above described simulation
experiment. Namely, the estimated bias (BIAS)

BIAS(i) =
1

1000

1000∑
l=1

(
β̃

(l)
ni − β0i

)
, i = 0, 1,

and the mean absolute variability (MAV)

MAV(i) =
1

1000

1000∑
l=1

∣∣∣β̃(l)
ni −mean(i)

∣∣∣ , i = 0, 1,
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where mean(i) was obtained for each of the assumed estimators by the formula

mean(i) =
1

10000

10000∑
l=1

β̃
(l)
ni , i = 0, 1,

using 10 000 independent realizations of the estimates β̃(l)
ni , i = 0, 1, different from that

ones used for the calculation of MAV.
From Tables 3 and 5 one can see that as soon as there is some contamination the

Med-estimator have the smallest absolute values of BIAS for larger sample sizes n =
500, 1000. For smaller sample sizes = 50 and n = 100 the same happens for levels of
contamination ε ≥ 0.2 or ε ≥ 0.1, respectively. Concerning the measure of variability
MAV presented in Tables 4 and 6 the best in this respect is in almost all cases the
MLE estimator as expected. The variability of the Med-estimator and its k-enhanced
versions is significantly bigger particularly for small sample sizes n = 50, 100 but for
larger sample sizes (n = 500, 1000) and higher level of contamination the variability of
the 10-Med-estimator is comparable with variability of the other robust estimators as
can be seen e.g. from Tables 4 and 6 and sectors corresponding to n = 500, 1000 and
ε ≥ 0.1. Let us remind that at the same time it shows smaller BIAS that the rest of the
compared robust estimators.

From the tables can be seen also that there is no much difference between the behavior
of the estimator of intercept (β̃n0) and the behavior of the estimator of slope (β̃n1).

As a conclusion from all the presented simulation results we can say that for larger
sample sizes (n ≈ 500) and higher level of contamination (ε ≥ 0.1) the Med-estimator
and its k-enhanced versions have shown to be good competitors to the other compared
robust estimators.



Median estimator for GLM with binary responses 787

n = 50 n = 100 n = 500 n = 1000

ε eβn MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.818 2 0.406 0 0.158 0 0.107 0
Morg 0.947 4 0.537 0 0.196 0 0.128 0
BY 0.739 2 0.414 0 0.173 0 0.116 0
CH 1.552 6 0.711 1 0.237 0 0.150 0

0 Med 3.480 14 2.188 6 0.771 0 0.346 0
5-Med 2.688 19 1.494 7 0.393 0 0.232 0
10-Med 2.773 19 1.577 8 0.365 0 0.213 0

MLE 0.915 0 0.830 0 0.876 0 0.903 0
Morg 0.998 1 0.623 0 0.478 0 0.475 0
BY 0.860 0 0.684 0 0.670 0 0.681 0
CH 1.448 4 0.716 0 0.349 0 0.329 0

0.05 Med 3.037 9 1.963 5 0.631 0 0.395 0
5-Med 2.906 14 1.621 7 0.423 0 0.321 0
10-Med 2.855 16 1.757 10 0.380 0 0.316 0

MLE 1.119 0 1.123 0 1.149 0 1.169 0
Morg 1.076 1 0.912 0 0.909 0 0.919 0
BY 1.049 0 1.017 0 1.027 0 1.044 0
CH 1.320 2 0.869 0 0.710 0 0.709 0

0.1 Med 2.592 7 1.763 4 0.770 0 0.612 0
5-Med 2.423 13 1.536 5 0.717 0 0.609 0
10-Med 2.748 14 1.604 10 0.688 0 0.613 0

MLE 1.442 0 1.431 0 1.439 0 1.449 0
Morg 1.395 0 1.377 0 1.380 0 1.392 0
BY 1.419 0 1.398 0 1.399 0 1.410 0
CH 1.431 0 1.334 0 1.365 0 1.379 0

0.2 Med 2.032 5 1.503 2 1.220 0 1.198 0
5-Med 1.918 6 1.616 3 1.207 0 1.209 0
10-Med 2.159 7 1.778 4 1.205 0 1.211 0

MLE 1.633 0 1.631 0 1.629 0 1.638 0
Morg 1.622 0 1.620 0 1.616 0 1.626 0
BY 1.626 0 1.622 0 1.617 0 1.627 0
CH 1.621 0 1.619 0 1.618 0 1.628 0

0.3 Med 1.898 2 1.592 1 1.538 0 1.563 0
5-Med 1.789 2 1.643 1 1.550 0 1.568 0
10-Med 1.791 2 1.563 0 1.553 0 1.568 0

Tab. 1. MAE and RR for selected estimators eβn of the true

parameter β0 in the ε-contaminated probit regression model (58).

(The achieved minima are printed bold.)
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n = 50 n = 100 n = 500 n = 1000

ε (βn1, βn2) MAE RR% MAE RR% MAE RR% MAE RR%

MLE 0.818 2 0.406 0 0.158 0 0.107 0
Morg 0.947 4 0.537 0 0.196 0 0.128 0
BY 0.739 2 0.414 0 0.173 0 0.116 0
CH 1.552 6 0.711 1 0.237 0 0.150 0

0 Med 3.480 14 2.188 6 0.771 0 0.346 0
5-Med 2.688 19 1.494 7 0.393 0 0.232 0
10-Med 2.773 19 1.577 8 0.365 0 0.213 0

MLE 0.917 0 0.845 0 0.884 0 0.919 0
Morg 0.957 1 0.608 0 0.516 0 0.533 0
BY 0.856 0 0.699 0 0.689 0 0.716 0
CH 1.327 3 0.696 0 0.394 0 0.394 0

0.05 Med 3.155 9 1.934 6 0.598 0 0.435 0
5-Med 2.932 13 1.581 5 0.426 0 0.403 0
10-Med 2.884 15 1.816 8 0.418 0 0.396 0

MLE 1.125 0 1.133 0 1.159 0 1.180 0
Morg 1.061 0 0.932 0 0.947 0 0.967 0
BY 1.067 0 1.035 0 1.047 0 1.069 0
CH 1.221 2 0.832 0 0.783 0 0.799 0

0.1 Med 2.371 6 1.630 3 0.759 0 0.756 0
5-Med 2.224 12 1.347 4 0.726 0 0.758 0
10-Med 2.509 13 1.420 7 0.730 0 0.761 0

MLE 1.448 0 1.439 0 1.451 0 1.462 0
Morg 1.417 0 1.390 0 1.402 0 1.414 0
BY 1.428 0 1.409 0 1.417 0 1.429 0
CH 1.392 0 1.358 0 1.391 0 1.406 0

0.2 Med 2.123 3 1.527 2 1.273 0 1.294 0
5-Med 1.768 4 1.359 1 1.285 0 1.302 0
10-Med 1.734 5 1.360 1 1.288 0 1.303 0

MLE 1.643 0 1.641 0 1.644 0 1.651 0
Morg 1.636 0 1.633 0 1.634 0 1.642 0
BY 1.639 0 1.635 0 1.635 0 1.643 0
CH 1.655 0 1.633 0 1.635 0 1.644 0

0.3 Med 1.904 1 1.642 1 1.586 0 1.604 0
5-Med 1.694 1 1.576 0 1.595 0 1.608 0
10-Med 1.676 2 1.585 0 1.597 0 1.609 0

Tab. 2. MAE and RR for selected estimators eβn of the true

parameter β0 in the probit regression model (61) ε-contaminated by

leverage points. (The achieved minima are printed bold.)
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n = 50 n = 100 n = 500 n = 1000

ε eβ BIAS BIAS BIAS BIASeβn0
eβn1

eβn0
eβn1

eβn0
eβn1

eβn0
eβn1

MLE -0.408 0.531 -0.184 0.215 -0.031 0.039 -0.018 0.020
Morg -0.528 0.590 -0.235 0.268 -0.040 0.048 -0.022 0.024
BY -0.293 1.171 -0.153 0.452 -0.031 0.077 -0.018 0.034
CH -1.091 0.361 -0.401 0.178 -0.066 0.038 -0.031 0.019

0 Med -2.986 2.862 -1.638 1.788 -0.376 0.424 -0.136 0.152
5-Med -2.457 2.411 -1.244 1.385 -0.177 0.204 -0.068 0.075
10-Med -2.583 2.606 -1.247 1.375 -0.164 0.189 -0.061 0.068

MLE 0.593 -0.815 0.759 -0.885 0.809 -0.943 0.827 -0.986
Morg 0.159 -0.200 0.345 -0.372 0.456 -0.497 0.460 -0.506
BY 0.512 0.535 0.609 -0.016 0.633 -0.317 0.645 -0.338
CH -0.499 -0.664 0.021 -0.678 0.295 -0.706 0.314 -0.730

0.05 Med -1.825 1.527 -1.019 1.122 -0.015 0.022 0.202 -0.213
5-Med -1.806 1.726 -0.778 0.856 0.174 -0.182 0.256 -0.273
10-Med -2.024 2.020 -0.985 1.073 0.181 -0.190 0.268 -0.286

MLE 0.951 -1.268 1.049 -1.216 1.066 -1.232 1.074 -1.264
Morg 0.705 -0.878 0.823 -0.907 0.862 -0.948 0.869 -0.968
BY 0.900 -0.254 0.968 -0.537 0.968 -0.726 0.978 -0.739
CH 0.183 -1.155 0.502 -1.088 0.673 -1.083 0.680 -1.110

0.1 Med -1.029 0.745 -0.406 0.446 0.374 -0.393 0.539 -0.580
5-Med -1.056 0.965 -0.406 0.465 0.515 -0.552 0.583 -0.628
10-Med -1.266 1.228 -0.487 0.547 0.537 -0.577 0.589 -0.634

MLE 1.282 -1.601 1.346 -1.528 1.350 -1.526 1.353 -1.548
Morg 1.248 -1.528 1.306 -1.459 1.306 -1.450 1.313 -1.474
BY 1.271 -1.397 1.323 -1.380 1.322 -1.431 1.326 -1.460
CH 1.156 -1.568 1.246 -1.485 1.293 -1.473 1.303 -1.495

0.2 Med 0.187 -0.418 0.486 -0.511 1.083 -1.167 1.141 -1.238
5-Med 0.341 -0.456 0.704 -0.746 1.149 -1.240 1.160 -1.260
10-Med 0.190 -0.319 0.681 -0.728 1.154 -1.246 1.163 -1.263

MLE 1.504 -1.761 1.546 -1.714 1.547 -1.713 1.548 -1.728
Morg 1.498 -1.747 1.538 -1.699 1.539 -1.696 1.541 -1.712
BY 1.501 -1.724 1.540 -1.698 1.540 -1.698 1.542 -1.715
CH 1.484 -1.753 1.537 -1.701 1.540 -1.698 1.542 -1.713

0.3 Med 0.888 -1.119 1.228 -1.320 1.484 -1.606 1.495 -1.628
5-Med 1.151 -1.307 1.394 -1.507 1.492 -1.616 1.499 -1.633
10-Med 1.177 -1.339 1.413 -1.530 1.493 -1.618 1.499 -1.634

Tab. 3. BIAS for selected estimators eβn of the true parameter β0 in

the ε-contaminated probit regression model (58). (The achieved

minima of absolute values are printed bold.) .
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n = 50 n = 100 n = 500 n = 1000

ε eβ MAV MAV MAV MAVeβn0
eβn1

eβn0
eβn1

eβn0
eβn1

eβn0
eβn1

MLE 0.730 0.999 0.392 0.460 0.147 0.170 0.098 0.117
Morg 0.947 1.216 0.547 0.612 0.181 0.210 0.118 0.140
BY 0.654 2.074 0.402 0.836 0.160 0.253 0.106 0.163
CH 1.856 0.920 0.763 0.465 0.221 0.186 0.140 0.127

0 Med 4.551 4.477 2.584 2.859 0.783 0.860 0.343 0.382
5-Med 3.539 3.598 1.847 2.079 0.371 0.420 0.218 0.250
10-Med 3.655 3.812 1.890 2.114 0.341 0.391 0.200 0.232

MLE 0.376 0.579 0.223 0.292 0.082 0.106 0.055 0.068
Morg 0.783 1.041 0.416 0.497 0.137 0.159 0.099 0.117
BY 0.418 1.806 0.260 0.758 0.100 0.201 0.069 0.144
CH 1.576 0.614 0.660 0.328 0.181 0.119 0.123 0.084

0.05 Med 3.674 3.788 2.280 2.567 0.603 0.673 0.302 0.338
5-Med 3.669 3.703 1.873 2.045 0.331 0.374 0.188 0.214
10-Med 3.620 3.801 2.133 2.320 0.286 0.324 0.172 0.195

MLE 0.226 0.340 0.149 0.190 0.061 0.074 0.042 0.053
Morg 0.499 0.697 0.276 0.342 0.099 0.119 0.069 0.086
BY 0.253 1.329 0.173 0.639 0.072 0.177 0.051 0.126
CH 1.083 0.379 0.563 0.220 0.156 0.087 0.104 0.062

0.1 Med 2.934 3.141 1.874 2.062 0.530 0.584 0.256 0.284
5-Med 2.791 3.013 1.674 1.872 0.351 0.387 0.153 0.178
10-Med 3.237 3.514 1.806 1.976 0.293 0.325 0.140 0.163

MLE 0.158 0.220 0.113 0.132 0.049 0.059 0.034 0.039
Morg 0.181 0.279 0.125 0.163 0.056 0.070 0.039 0.050
BY 0.162 0.534 0.117 0.253 0.052 0.085 0.036 0.061
CH 0.333 0.238 0.185 0.144 0.065 0.064 0.045 0.044

0.2 Med 1.676 1.994 1.087 1.256 0.258 0.299 0.120 0.139
5-Med 1.462 1.827 1.012 1.172 0.119 0.140 0.078 0.095
10-Med 1.804 2.152 1.181 1.322 0.103 0.123 0.073 0.089

MLE 0.150 0.189 0.105 0.120 0.045 0.051 0.033 0.036
Morg 0.152 0.201 0.107 0.128 0.046 0.054 0.033 0.038
BY 0.150 0.229 0.105 0.130 0.046 0.054 0.033 0.038
CH 0.167 0.195 0.108 0.125 0.046 0.053 0.033 0.038

0.3 Med 1.005 1.202 0.443 0.544 0.079 0.093 0.052 0.066
5-Med 0.625 0.845 0.302 0.374 0.061 0.072 0.041 0.050
10-Med 0.576 0.831 0.196 0.250 0.057 0.067 0.040 0.048

Tab. 4. MAV for selected estimators eβn of the true parameter β0 in

the ε-contaminated probit regression model (58). (The achieved

minima are printed bold.)
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n = 50 n = 100 n = 500 n = 1000

ε eβ BIAS BIAS BIAS BIASeβn0
eβn1

eβn0
eβn1

eβn0
eβn1

eβn0
eβn1

MLE -0.408 0.531 -0.184 0.215 -0.031 0.039 -0.018 0.020
Morg -0.528 0.590 -0.235 0.268 -0.040 0.048 -0.022 0.024
BY -0.293 1.171 -0.153 0.452 -0.031 0.077 -0.018 0.034
CH -1.091 0.361 -0.401 0.178 -0.066 0.038 -0.031 0.019

0 Med -2.986 2.862 -1.638 1.788 -0.376 0.424 -0.136 0.152
5-Med -2.457 2.411 -1.244 1.385 -0.177 0.204 -0.068 0.075
10-Med -2.583 2.606 -1.247 1.375 -0.164 0.189 -0.061 0.068

MLE 0.613 -0.823 0.767 -0.891 0.818 -0.945 0.836 -0.991
Morg 0.226 -0.267 0.394 -0.423 0.495 -0.532 0.504 -0.551
BY 0.541 0.384 0.629 -0.123 0.654 -0.372 0.668 -0.402
CH -0.353 -0.686 0.128 -0.698 0.354 -0.721 0.374 -0.752

0.05 Med -1.762 1.479 -0.793 0.876 0.133 -0.124 0.314 -0.333
5-Med -1.648 1.577 -0.626 0.714 0.277 -0.283 0.358 -0.381
10-Med -1.842 1.849 -0.784 0.877 0.291 -0.298 0.361 -0.385

MLE 0.971 -1.263 1.058 -1.222 1.079 -1.234 1.087 -1.268
Morg 0.771 -0.931 0.874 -0.962 0.904 -0.984 0.912 -1.009
BY 0.927 -0.445 0.988 -0.680 0.992 -0.806 1.001 -0.822
CH 0.377 -1.161 0.630 -1.108 0.756 -1.098 0.760 -1.129

0.1 Med -0.787 0.552 -0.193 0.263 0.590 -0.615 0.696 -0.744
5-Med -0.832 0.769 -0.074 0.107 0.692 -0.726 0.721 -0.773
10-Med -0.996 0.990 -0.134 0.176 0.702 -0.738 0.722 -0.775

MLE 1.307 -1.584 1.358 -1.537 1.372 -1.529 1.373 -1.551
Morg 1.282 -1.524 1.327 -1.480 1.337 -1.464 1.341 -1.489
BY 1.299 -1.416 1.340 -1.437 1.349 -1.451 1.352 -1.480
CH 1.208 -1.555 1.296 -1.500 1.328 -1.483 1.335 -1.507

0.2 Med 0.353 -0.505 0.798 -0.854 1.224 -1.297 1.245 -1.341
5-Med 0.553 -0.630 0.995 -1.059 1.247 -1.324 1.255 -1.353
10-Med 0.461 -0.523 0.987 -1.037 1.249 -1.326 1.256 -1.354

MLE 1.542 -1.740 1.560 -1.724 1.577 -1.713 1.574 -1.729
Morg 1.538 -1.729 1.555 -1.713 1.571 -1.699 1.569 -1.717
BY 1.540 -1.713 1.556 -1.713 1.571 -1.701 1.570 -1.719
CH 1.530 -1.733 1.555 -1.715 1.572 -1.701 1.570 -1.717

0.3 Med 1.067 -1.196 1.365 -1.467 1.544 -1.637 1.548 -1.666
5-Med 1.305 -1.375 1.485 -1.609 1.550 -1.646 1.550 -1.669
10-Med 1.350 -1.409 1.510 -1.632 1.550 -1.647 1.550 -1.669

Tab. 5. BIAS for selected estimators eβn of the true parameter β0 in

the probit regression model (61) ε-contaminated by leverage points.

(The achieved minima of absolute values are printed bold.)
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n = 50 n = 100 n = 500 n = 1000

ε eβ MAV MAV MAV MAVeβn0
eβn1

eβn0
eβn1

eβn0
eβn1

eβn0
eβn1

MLE 0.730 0.999 0.392 0.460 0.147 0.170 0.098 0.117
Morg 0.947 1.216 0.547 0.612 0.181 0.210 0.118 0.140
BY 0.654 2.074 0.402 0.836 0.160 0.253 0.106 0.163
CH 1.856 0.920 0.763 0.465 0.221 0.186 0.140 0.127

0 Med 4.551 4.477 2.584 2.859 0.783 0.860 0.343 0.382
5-Med 3.539 3.598 1.847 2.079 0.371 0.420 0.218 0.250
10-Med 3.655 3.812 1.890 2.114 0.341 0.391 0.200 0.232

MLE 0.363 0.563 0.217 0.280 0.081 0.105 0.059 0.075
Morg 0.701 0.970 0.374 0.443 0.133 0.157 0.093 0.112
BY 0.392 1.626 0.241 0.692 0.097 0.200 0.070 0.133
CH 1.380 0.582 0.610 0.299 0.175 0.118 0.112 0.086

0.05 Med 3.775 3.892 2.180 2.383 0.513 0.578 0.253 0.289
5-Med 3.603 3.688 1.784 1.949 0.276 0.316 0.164 0.192
10-Med 3.580 3.807 2.111 2.277 0.265 0.297 0.152 0.178

MLE 0.220 0.334 0.147 0.183 0.060 0.072 0.041 0.051
Morg 0.416 0.610 0.244 0.303 0.091 0.111 0.065 0.080
BY 0.246 1.102 0.169 0.497 0.070 0.156 0.048 0.114
CH 0.873 0.372 0.428 0.210 0.132 0.084 0.094 0.060

0.1 Med 2.639 2.818 1.664 1.832 0.334 0.385 0.196 0.224
5-Med 2.536 2.767 1.307 1.495 0.185 0.222 0.116 0.141
10-Med 2.932 3.160 1.449 1.582 0.166 0.198 0.106 0.130

MLE 0.162 0.217 0.113 0.130 0.048 0.056 0.035 0.040
Morg 0.186 0.270 0.126 0.158 0.053 0.067 0.038 0.048
BY 0.164 0.371 0.117 0.211 0.049 0.078 0.036 0.055
CH 0.243 0.229 0.159 0.142 0.058 0.061 0.042 0.043

0.2 Med 1.668 1.983 0.873 1.000 0.137 0.170 0.084 0.108
5-Med 1.168 1.505 0.481 0.577 0.081 0.106 0.059 0.078
10-Med 1.190 1.512 0.460 0.556 0.077 0.100 0.055 0.073

MLE 0.150 0.196 0.106 0.120 0.044 0.050 0.033 0.035
Morg 0.150 0.206 0.107 0.126 0.045 0.053 0.034 0.037
BY 0.150 0.251 0.107 0.128 0.044 0.053 0.034 0.037
CH 0.168 0.201 0.109 0.124 0.045 0.052 0.034 0.037

0.3 Med 0.849 1.141 0.331 0.444 0.069 0.090 0.050 0.062
5-Med 0.399 0.634 0.145 0.199 0.053 0.071 0.040 0.049
10-Med 0.327 0.595 0.129 0.179 0.051 0.067 0.038 0.048

Tab. 6. MAV for selected estimators eβn of the true parameter β0 in

the probit regression model (61) ε-contaminated by leverage points.

(The achieved minima are printed bold.)
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