Previous |  Up |  Next

Article

Keywords:
Bayesian decisions; power divergences; Cox--Ross--Rubinstein binomial asset price models
Summary:
We study Bayesian decision making based on observations $\left(X_{n,t} : t\in\{0,\frac{T}{n},2\frac{T}{n},\ldots,n\frac{T}{n}\}\right)$ ($T>0, n\in \mathbb{N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty$), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions.
References:
[1] A. K. Bera, Y. Bilias: The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis. J. Econometrics 107 (2002), 51-86. DOI 10.1016/S0304-4076(01)00113-0 | MR 1889952 | Zbl 1088.62505
[2] A. Berlinet, I. Vajda: Selection rules based on divergences. Statistics 45 (2011), 479-495. DOI 10.1080/02331880903573385 | MR 2832180 | Zbl 1229.62035
[3] M. Broniatowski, I. Vajda: Several applications of divergence criteria in continuous families. To appear in Kybernetika (2012). See also Research Report No. 2257, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2009; moreover, see arXiv:0911.0937v1 [math.ST].
[4] J. C. Cox, S. A. Ross, M. Rubinstein: Option pricing: a simplified approach. J. Finan. Econ. 7 (1979), 229-263. DOI 10.1016/0304-405X(79)90015-1 | Zbl 1131.91333
[5] N. Cressie, T. R. C. Read: Multinomial goodness-of-fit tests. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 46 (1984), 440-464. MR 0790631 | Zbl 0571.62017
[6] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields 141 (2008), 213-246. DOI 10.1007/s00440-007-0084-z | MR 2372970 | Zbl 1133.62039
[7] I. Csiszár, P. C. Shields: Information theory and statistics: a tutorial. Found. Trends Commun. Inform. Theory 1 (2004), 4, 417-528. DOI 10.1561/0100000004 | Zbl 1157.62300
[8] I. V. Girsanov: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab. Appl. 5 (1960), 285-301. MR 0133152 | Zbl 0100.34004
[9] A. Golan: Information and entropy econometrics - editor's view. J. Econometrics 107 (2002), 1-15. DOI 10.1016/S0304-4076(01)00110-5 | MR 1889949 | Zbl 1088.62519
[10] A. Gretton, L. Györfi: Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11 (2010), 1391-1423. MR 2645456 | Zbl 1242.62033
[11] P. Harremoes, I. Vajda: On the Bahadur-effcient testing of uniformity by means of the entropy. IEEE Trans. Inform. Theory 54 (2008), 321-331. DOI 10.1109/TIT.2007.911155 | MR 2446756
[12] P. Harremoes, I. Vajda: On Bahadur efficiency of power divergence statistics. Preprint arXiv:1002.1493v1 [math.ST] (2010).
[13] T. Hobza, L. Pardo, D. Morales: Rényi statistics for testing equality of autocorrelation coefficients. Statist. Methodol. 6 (2009), 424-436. DOI 10.1016/j.stamet.2009.03.001 | MR 2751084
[14] F. Liese, K.-J. Miescke: Statistical Decision Theory. Springer-Verlag, New York 2008. MR 2421720 | Zbl 1154.62008
[15] F. Liese, D. Morales, I. Vajda: Asymptotically sufficient partitions and quantizations. IEEE Trans. Inform. Theory 52 (2006), 5599-5606. DOI 10.1109/TIT.2006.885495 | MR 2300722
[16] F. Liese, I. Vajda: Convex Statistical Distances. Teubner, Leipzig 1987. MR 0926905 | Zbl 0656.62004
[17] F. Liese, I. Vajda: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412. DOI 10.1109/TIT.2006.881731 | MR 2300826
[18] E. Maasoumi: A compendium to information theory in economics and econometrics. Econometrics Rev. 12 (1993), 2, 137-181. DOI 10.1080/07474939308800260 | MR 1222574 | Zbl 0769.62003
[19] D. Morales, I. Vajda: Generalized information criteria for optimal Bayes decisions. Research Report No. 2274, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2010.
[20] D. B. Nelson, K. Ramaswamy: Simple binomial processes as diffusion approximations in financial models. Rev. Financ. Stud. 3 (1990), 393-430. DOI 10.1093/rfs/3.3.393
[21] L. Pardo: Statistical Inference Based on Divergence Measures. Chapman \& Hall, Boca Raton 2005. MR 2183173 | Zbl 1118.62008
[22] M. C. Pardo: Testing equality restrictions in generalized linear models for multinomial data. Metrika 73 (2011), 231-253. DOI 10.1007/s00184-009-0275-y | MR 2769272 | Zbl 1206.62131
[23] T. R. C. Read, N. A. C. Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer-Verlag, New York 1988. MR 0955054 | Zbl 0663.62065
[24] H. Strasser: Mathematical Theory of Statistics. De Gruyter, Berlin 1985. MR 0812467 | Zbl 0594.62017
[25] W. Stummer: Exponentials, Diffusions, Finance, Entropy and Information. Shaker, Aachen 2004. Zbl 1140.91013
[26] W. Stummer, I. Vajda: Optimal statistical decisions about some alternative financial models. J. Econometrics 137 (2007), 441-471. DOI 10.1016/j.jeconom.2005.10.001 | MR 2354952
[27] W. Stummer, I. Vajda: On divergences of finite measures and their applicability in statistics and information theory. Statistics 44 (2010), 169-187. DOI 10.1080/02331880902986919 | MR 2674416
[28] I. Vajda, E.C. van der Meulen: Goodness-of-Fit criteria based on observations quantized by hypothetical and empirical percentiles. In: Handbook of Fitting Statistical Distributions with R (Z.A. Katrian, E.J. Dudewicz eds.), Chapman \& Hall / CRC, 2010, pp. 917-994.
[29] I. Vajda, J. Zvárová: On generalized entropies, Bayesian decisions and statistical diversity. Kybernetika 43 (2007), 675-696. MR 2376331 | Zbl 1143.94006
Partner of
EuDML logo