Article
Keywords:
Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula
Summary:
For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\{0,1\}$, and let $a_1, a_2,\dots , a_m$ $(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\pmod p$. Let \begin {equation*} N(c,m,p)=\frac {1}{2^{m-1}}\mathop {\mathop {\sum }_{a_1=1}^{p-1} \mathop {\sum }_{a_2=1}^{p-1}\dots \mathop {\sum }_{a_m=1}^{p-1}} _{a_1a_2\dots a_m\equiv c\pmod p} (1-(-1)^{a_1+E_1})(1-(-1)^{a_2+E_2})\dots (1-(-1)^{a_m+E_m}). \end {equation*} \endgraf We are interested in the mean value of the sums \begin {equation*} \sum _{c=1}^{p-1}E^2(c,m,p), \end {equation*} where $ E(c,m,p)=N(c,m,p)-({(p-1)^{m-1}})/({2^{m-1}})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.
References:
[2] Guy, R. K.:
Unsolved Problems in Number Theory. Springer New York-Heidelberg-Berlin (1981).
MR 0656313 |
Zbl 0474.10001
[3] Ma, R., Zhang, J., Zhang, Y.:
On the $2m$th power mean of Dirichlet $L$-functions with the weight of trigonometric sums. Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 411-421.
DOI 10.1007/s12044-009-0046-8 |
MR 2647187
[7] Zhang, W.:
On a problem of D. H. Lehmer and its generalization. Compos. Math. 86 (1993), 307-316.
MR 1219630 |
Zbl 0783.11003
[8] Zhang, W.:
A problem of D. H. Lehmer and its generalization (II). Compos. Math. 91 (1994), 47-56.
MR 1273925 |
Zbl 0798.11001