Article
Keywords:
Dedekind sum; Cochrane sum; Knopp identity
Summary:
Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by $$ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac {j}{q}\Big )\Big )\Big (\Big (\frac {hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac {aj}{q}\Big )\Big )\Big (\Big (\frac {bj}{q}\Big )\Big ), $$ respectively, where $$ ((x))= \begin {cases} x-[x]-\frac {1}{2}, & \text {if $x$ is not an integer};\\ 0, & \text {if $x$ is an integer}. \end {cases} $$ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$ \gathered \sum _{d\mid n}\sum _{r=1}^d s\Big (\frac {n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac {n}{d}a+r_1q,\frac {n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \endgathered $$ where $\sigma (n)=\sum \nolimits _{d\mid n}d$. \endgraf In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.
References:
[1] Apostol, T. M.:
Modular Functions and Dirichlet Series in Number Theory. Springer New York, Heidelberg, Berlin (1976).
MR 0422157 |
Zbl 0332.10017
[2] Berndt, B. C.:
Analytic Eisentein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304 (1978), 332-365.
MR 0514690
[3] Berndt, B. C., Goldberg, L. A.:
Analytic properties of arithmetic sums arising in the theory of the classical theta-functions. SIAM J. Math. Anal. 15 (1984), 143-150.
DOI 10.1137/0515011 |
MR 0728690 |
Zbl 0537.10006
[9] Rademacher, H., Grosswald, E.:
Dedekind Sums. The Carus Mathematical Monographs No. 16 The Mathematical Association of America, Washington, D. C. (1972).
MR 0357299 |
Zbl 0251.10020
[14] Zhang, W., Yi, Y.:
On the upper bound estimate of Cochrane sums. Soochow J. Math. 28 (2002), 297-304.
MR 1926326 |
Zbl 1016.11038
[15] Zheng, Z.:
On an identity for Dedekind sums. Acta Math. Sin. 37 (1994), 690-694.
Zbl 0842.11017