Previous |  Up |  Next

Article

Title: Finite spectra and quasinilpotent equivalence in Banach algebras (English)
Author: Brits, Rudi M.
Author: Raubenheimer, Heinrich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 1101-1116
Summary lang: English
.
Category: math
.
Summary: This paper further investigates the implications of quasinilpotent equivalence for (pairs of) elements belonging to the socle of a semisimple Banach algebra. Specifically, not only does quasinilpotent equivalence of two socle elements imply spectral equality, but also the trace, determinant and spectral multiplicities of the elements must agree. It is hence shown that quasinilpotent equivalence is established by a weaker formula (than that of the spectral semidistance). More generally, in the second part, we show that two elements possessing finite spectra are quasinilpotent equivalent if and only if they share the same set of Riesz projections. This is then used to obtain further characterizations in a number of general, as well as more specific situations. Thirdly, we show that the ideas in the preceding sections turn out to be useful in the case of $C^*$-algebras, but now for elements with infinite spectra; we give two results which may indicate a direction for further research. (English)
Keyword: finite rank elements
Keyword: quasinilpotent equivalence
Keyword: normal elements
MSC: 46H05
MSC: 46H10
idZBL: Zbl 1274.46094
idMR: MR3010259
DOI: 10.1007/s10587-012-0066-x
.
Date available: 2012-11-10T21:47:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143047
.
Reference: [1] Aupetit, B.: A Primer on Spectral Theory.Springer New York (1991). Zbl 0715.46023, MR 1083349
Reference: [2] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras.Stud. Math. 121 (1996), 115-136. Zbl 0872.46028, MR 1418394
Reference: [3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras.Springer New York (1973). Zbl 0271.46039, MR 0423029
Reference: [4] Brits, R.: Perturbation and spectral discontinuity in Banach algebras.Stud. Math. 203 (2011), 253-263. MR 2786166, 10.4064/sm203-3-3
Reference: [5] a, I. Colojoar\v, Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators.J. Math. Mech. 15 (1966), 521-540. MR 0192344
Reference: [6] a, I. Colojoar\v, Foiaş, C.: Theory of Generalized Spectral Operators.Mathematics and its Applications. 9 New York-London-Paris: Gordon and Breach Science Publishers (1968). MR 0394282
Reference: [7] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators.J. Math. Anal. Appl. 31 (1970), 473-486. MR 0290146, 10.1016/0022-247X(70)90001-6
Reference: [8] Harte, R.: On rank one elements.Stud. Math. 117 (1995), 73-77. Zbl 0837.46036, MR 1367694, 10.4064/sm-117-1-73-77
Reference: [9] Mouton, S., Raubenheimer, H.: More spectral theory in ordered Banach algebras.Positivity 1 (1997), 305-317. Zbl 0904.46036, MR 1660397, 10.1023/A:1009717500980
Reference: [10] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.Operator Theory: Advances and Applications Basel: Birkhäuser (2003). MR 1975356
Reference: [11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras.Czech. Math. J. 28 (1978), 656-676. Zbl 0394.46041, MR 0506439
Reference: [12] Raubenheimer, H.: On quasinilpotent equivalence in Banach algebras.Czech. Math. J. 60 (2010), 589-596. MR 2672403, 10.1007/s10587-010-0045-z
Reference: [13] Razpet, M.: The quasinilpotent equivalence in Banach algebras..J. Math. Anal. Appl. 166 (1992), 378-385. Zbl 0802.46064, MR 1160933, 10.1016/0022-247X(92)90304-V
.

Files

Files Size Format View
CzechMathJ_62-2012-4_16.pdf 284.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo