Previous |  Up |  Next

Article

Keywords:
finite rank elements; quasinilpotent equivalence; normal elements
Summary:
This paper further investigates the implications of quasinilpotent equivalence for (pairs of) elements belonging to the socle of a semisimple Banach algebra. Specifically, not only does quasinilpotent equivalence of two socle elements imply spectral equality, but also the trace, determinant and spectral multiplicities of the elements must agree. It is hence shown that quasinilpotent equivalence is established by a weaker formula (than that of the spectral semidistance). More generally, in the second part, we show that two elements possessing finite spectra are quasinilpotent equivalent if and only if they share the same set of Riesz projections. This is then used to obtain further characterizations in a number of general, as well as more specific situations. Thirdly, we show that the ideas in the preceding sections turn out to be useful in the case of $C^*$-algebras, but now for elements with infinite spectra; we give two results which may indicate a direction for further research.
References:
[1] Aupetit, B.: A Primer on Spectral Theory. Springer New York (1991). MR 1083349 | Zbl 0715.46023
[2] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras. Stud. Math. 121 (1996), 115-136. MR 1418394 | Zbl 0872.46028
[3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras. Springer New York (1973). MR 0423029 | Zbl 0271.46039
[4] Brits, R.: Perturbation and spectral discontinuity in Banach algebras. Stud. Math. 203 (2011), 253-263. DOI 10.4064/sm203-3-3 | MR 2786166
[5] a, I. Colojoar\v, Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators. J. Math. Mech. 15 (1966), 521-540. MR 0192344
[6] a, I. Colojoar\v, Foiaş, C.: Theory of Generalized Spectral Operators. Mathematics and its Applications. 9 New York-London-Paris: Gordon and Breach Science Publishers (1968). MR 0394282
[7] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators. J. Math. Anal. Appl. 31 (1970), 473-486. DOI 10.1016/0022-247X(70)90001-6 | MR 0290146
[8] Harte, R.: On rank one elements. Stud. Math. 117 (1995), 73-77. DOI 10.4064/sm-117-1-73-77 | MR 1367694 | Zbl 0837.46036
[9] Mouton, S., Raubenheimer, H.: More spectral theory in ordered Banach algebras. Positivity 1 (1997), 305-317. DOI 10.1023/A:1009717500980 | MR 1660397 | Zbl 0904.46036
[10] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory: Advances and Applications Basel: Birkhäuser (2003). MR 1975356
[11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J. 28 (1978), 656-676. MR 0506439 | Zbl 0394.46041
[12] Raubenheimer, H.: On quasinilpotent equivalence in Banach algebras. Czech. Math. J. 60 (2010), 589-596. DOI 10.1007/s10587-010-0045-z | MR 2672403
[13] Razpet, M.: The quasinilpotent equivalence in Banach algebras. J. Math. Anal. Appl. 166 (1992), 378-385. DOI 10.1016/0022-247X(92)90304-V | MR 1160933 | Zbl 0802.46064
Partner of
EuDML logo