Previous |  Up |  Next

Article

Title: Decomposition of $\ell $-group-valued measures (English)
Author: Barbieri, Giuseppina
Author: Valente, Antonietta
Author: Weber, Hans
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 1085-1100
Summary lang: English
.
Category: math
.
Summary: We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras. (English)
Keyword: D-lattice
Keyword: measure
Keyword: lattice ordered group
Keyword: decomposition
Keyword: Hammer-Sobczyk decomposition
MSC: 06C15
MSC: 06F15
MSC: 28B10
MSC: 28B15
idZBL: Zbl 1274.28025
idMR: MR3010258
DOI: 10.1007/s10587-012-0065-y
.
Date available: 2012-11-10T21:46:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143046
.
Reference: [1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras.Order 20 (2003), 67-77. Zbl 1030.03047, MR 1993411, 10.1023/A:1024458125510
Reference: [2] Avallone, A., Barbieri, G., Vitolo, P.: On the Alexandroff decomposition theorem.Math. Slovaca 58 (2008), 185-200. Zbl 1174.28010, MR 2391213, 10.2478/s12175-008-0067-2
Reference: [3] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem.Algebra Univers. 60 (2009), 1-18. Zbl 1171.28004, MR 2480629
Reference: [4] Birkhoff, G.: Lattice Theory.American Mathematical Society New York (1940). Zbl 0063.00402, MR 0001959
Reference: [5] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. A Study of Finitely Additive Measures.Pure and Applied Mathematics, 109 Academic Press, a Subsidiary of Harcourt Brace Jovanovich, Publishers (1983). MR 0751777
Reference: [6] Boccuto, A., Candeloro, D.: Sobczyk-Hammer decompositions and convergence theorems for measures with values in $\ell$-groups.Real Anal. Exch. 33 (2008), 91-106. MR 2402865, 10.14321/realanalexch.33.1.0091
Reference: [7] Iglesias, M. Congost: Measures and probabilities in ordered structures.Stochastica 5 (1981), 45-68. MR 0625841
Reference: [8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Dordrecht: Kluwer Academic Publishers Bratislava: Ister Science (2000). MR 1861369
Reference: [9] Fleischer, I., Traynor, T.: Group-valued modular functions.Algebra Univers. 14 (1982), 287-291. Zbl 0458.06004, MR 0654397, 10.1007/BF02483932
Reference: [10] Glass, A. M. W., Holland, W. C.: Lattice-ordered Groups.Advances and Techniques Kluwer Academic Publishers (1989). Zbl 0705.06001, MR 1036072
Reference: [11] Hammer, P. C., Sobczyk, A.: The ranges of additive set functions.Duke Math. J. 11 (1944), 847-851. Zbl 0061.09803, MR 0011165, 10.1215/S0012-7094-44-01173-7
Reference: [12] Riesz, F.: Sur quelques notions fondamentales dans la théorie générale des opérations linéaires.Ann. Math. 41 (1940), 174-206 French. Zbl 0022.31802, MR 0000902, 10.2307/1968825
Reference: [13] Schmidt, K. D.: Jordan Decompositions of Generalized Vector Measures.Pitman Research Notes in Mathematics Series, 214 Harlow: Longman Scientific & Technical; New York etc.: John Wiley & Sons, Inc. (1989). Zbl 0692.28004, MR 1028550
Reference: [14] Schmidt, K. D.: Decomposition and extension of abstract measures in Riesz spaces.Rend. Ist. Mat. Univ. Trieste 29 (1998), 135-213. Zbl 0929.28009, MR 1696025
.

Files

Files Size Format View
CzechMathJ_62-2012-4_15.pdf 305.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo