Title:
|
Decomposition of $\ell $-group-valued measures (English) |
Author:
|
Barbieri, Giuseppina |
Author:
|
Valente, Antonietta |
Author:
|
Weber, Hans |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
1085-1100 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras. (English) |
Keyword:
|
D-lattice |
Keyword:
|
measure |
Keyword:
|
lattice ordered group |
Keyword:
|
decomposition |
Keyword:
|
Hammer-Sobczyk decomposition |
MSC:
|
06C15 |
MSC:
|
06F15 |
MSC:
|
28B10 |
MSC:
|
28B15 |
idZBL:
|
Zbl 1274.28025 |
idMR:
|
MR3010258 |
DOI:
|
10.1007/s10587-012-0065-y |
. |
Date available:
|
2012-11-10T21:46:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143046 |
. |
Reference:
|
[1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras.Order 20 (2003), 67-77. Zbl 1030.03047, MR 1993411, 10.1023/A:1024458125510 |
Reference:
|
[2] Avallone, A., Barbieri, G., Vitolo, P.: On the Alexandroff decomposition theorem.Math. Slovaca 58 (2008), 185-200. Zbl 1174.28010, MR 2391213, 10.2478/s12175-008-0067-2 |
Reference:
|
[3] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem.Algebra Univers. 60 (2009), 1-18. Zbl 1171.28004, MR 2480629 |
Reference:
|
[4] Birkhoff, G.: Lattice Theory.American Mathematical Society New York (1940). Zbl 0063.00402, MR 0001959 |
Reference:
|
[5] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. A Study of Finitely Additive Measures.Pure and Applied Mathematics, 109 Academic Press, a Subsidiary of Harcourt Brace Jovanovich, Publishers (1983). MR 0751777 |
Reference:
|
[6] Boccuto, A., Candeloro, D.: Sobczyk-Hammer decompositions and convergence theorems for measures with values in $\ell$-groups.Real Anal. Exch. 33 (2008), 91-106. MR 2402865, 10.14321/realanalexch.33.1.0091 |
Reference:
|
[7] Iglesias, M. Congost: Measures and probabilities in ordered structures.Stochastica 5 (1981), 45-68. MR 0625841 |
Reference:
|
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Dordrecht: Kluwer Academic Publishers Bratislava: Ister Science (2000). MR 1861369 |
Reference:
|
[9] Fleischer, I., Traynor, T.: Group-valued modular functions.Algebra Univers. 14 (1982), 287-291. Zbl 0458.06004, MR 0654397, 10.1007/BF02483932 |
Reference:
|
[10] Glass, A. M. W., Holland, W. C.: Lattice-ordered Groups.Advances and Techniques Kluwer Academic Publishers (1989). Zbl 0705.06001, MR 1036072 |
Reference:
|
[11] Hammer, P. C., Sobczyk, A.: The ranges of additive set functions.Duke Math. J. 11 (1944), 847-851. Zbl 0061.09803, MR 0011165, 10.1215/S0012-7094-44-01173-7 |
Reference:
|
[12] Riesz, F.: Sur quelques notions fondamentales dans la théorie générale des opérations linéaires.Ann. Math. 41 (1940), 174-206 French. Zbl 0022.31802, MR 0000902, 10.2307/1968825 |
Reference:
|
[13] Schmidt, K. D.: Jordan Decompositions of Generalized Vector Measures.Pitman Research Notes in Mathematics Series, 214 Harlow: Longman Scientific & Technical; New York etc.: John Wiley & Sons, Inc. (1989). Zbl 0692.28004, MR 1028550 |
Reference:
|
[14] Schmidt, K. D.: Decomposition and extension of abstract measures in Riesz spaces.Rend. Ist. Mat. Univ. Trieste 29 (1998), 135-213. Zbl 0929.28009, MR 1696025 |
. |