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(Received December 18, 2010)

Abstract. In 1999 Nina Zorboska and in 2003 P. S.Bourdon, D. Levi, S.K.Narayan
and J.H. Shapiro investigated the essentially normal composition operator Cϕ, when ϕ is
a linear-fractional self-map of D. In this paper first, we investigate the essential normality
problem for the operator TwCϕ on the Hardy space H2, where w is a bounded measurable
function on ∂D which is continuous at each point of F (ϕ), ϕ ∈ S(2), and Tw is the Toeplitz
operator with symbol w. Then we use these results and characterize the essentially normal
finite linear combinations of certain linear-fractional composition operators on H2.

Keywords: Hardy spaces, essentially normal, composition operator, linear-fractional
transformation

MSC 2010 : 47B33

1. Introduction

Let D be the open unit disk in the complex plane C, ∂D be its boundary, and

Hol(D) denotes the space of all holomorphic functions on D.

For an analytic function f on the unit disk and 0 < r < 1, we define the dilated

function fr by fr(e
iθ) = f(reiθ). It is easy to see that the functions fr are continuous

on ∂D for each r, hence they are in Lp(∂D, dθ/2π), where dθ/2π is the normalized

arc length measure on the unit circle.

For 0 < p < ∞, the Hardy space Hp(D) = Hp is the set of all analytic functions

on the unit disk for which

‖f‖pp = sup
0<r<1

∫ 2π

0

|fr(e
iθ)|p

dθ

2π

<∞.
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Also we recall that H∞(D) = H∞ is the space of all bounded analytic functions

defined on D, with the supremum norm ‖f‖∞ = sup
z∈D

|f(z)|. We know that for p > 1,

Hp is a Banach space (see, e.g., [8, p. 37]). For more information about the Hardy

spaces see, for example, [7] and [8]. For β > 1, let Dβ denote the reproducing kernel

Hilbert space of functions analytic in the unit disk D and having the kernel functions

Kw(z) = (1 − wz)−β. The Hardy space H2 is exactly D1.

For each ψ ∈ L∞(∂D), we define the Toeplitz operator Tψ on H
2 by Tψ(f) =

P (ψf), where P denotes the orthogonal projection of L2(∂D) onto H2. Since an

orthogonal projection has norm 1, clearly Tψ is bounded. For any analytic self-

map ϕ of D, the composition operator Cϕ on H
2 is defined by Cϕ(f) = f ◦ ϕ. It is

well known (see, e.g., [8, p. 29] or [16, Theorem 1]) that the composition operators

are bounded on each of the Hardy spaces Hp (0 < p <∞).

A mapping of the form

(1) ϕ(z) =
az + b

cz + d
(ad− bc 6= 0)

is called a linear-fractional transformation. We denote the set of those linear-

fractional transformations that take the open unit disk D into itself by LFT(D).

It is well known that the automorphisms of the unit disk, that is, the one-to-one

analytic maps of the disk onto itself, are just the functions ϕ(z) = λ(a− z)/(1− āz),

where |λ| = 1 and |a| < 1.

For bounded operators A and B on a Hilbert space, we use the notation [A,B] :=

AB−BA for the commutator of A and B. Recall that an operator A is called normal

if [A,A∗] = 0 and essentially normal if [A,A∗] is compact. In 1969, H. J. Schwartz [18]

showed that a composition operator on H2 is normal if and only if it is induced by

a dilation z → az, where |a| 6 1. In [21] Nina Zorboska has characterized the

essentially normal composition operators induced on the Hardy space H2 by auto-

morphisms of the unit disk. In addition, Zorboska has shown that the composi-

tion operators induced on H2 by linear-fractional transformations fixing no point

on the unit circle are not nontrivially essentially normal. P. S. Bourdon, D. Levi,

S.K. Narayan, and J.H. Shapiro in [3] have shown that a composition operator in-

duced on H2 by a linear-fractional self-map of the unit disk is nontrivially essentially

normal if and only if it is induced by a parabolic non-automorphism. The essen-

tially normal composition operators on other spaces have been investigated by some

authors (see, e.g., [4], [12], and [13]).

If ϕ and ψ are linear-fractional self-maps of D or BN , then Cϕ − Cψ cannot be

non-trivially compact; i.e., if the difference is compact, either Cϕ and Cψ are individ-

ually compact or ϕ = ψ. The fact that a difference of linear-fractional composition

operators cannot be non-trivially compact on H2 or A2
α(D) was first obtained by
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P. S. Bourdon [2] and J. Moorhouse [14] as a consequence of results on the compact-

ness of a difference of more general composition operators in one variable. Recently

there has been a great interest in studying some linear combinations of composition

operators; see, for example, [9] and [11].

In this paper, we use the results of T. L. Kriete and J. L. Moorhouse [11] and

T. L. Kriete, B.D. MacCluer and J. L. Moorhouse [10] in order to investigate the

essential normality problem for certain finite linear combinations of linear-fractional

composition operators on H2.

2. Preliminaries

Here we collect the fundamental facts about some definitions and results which

are required in the sequel.

2.1. Angular derivatives. Let ϕ be an analytic self-map of D. We say that

ϕ has a finite angular derivative at ζ on the unit circle if there is η on the unit circle

such that (ϕ(z) − η)/(z − ζ) has a finite non-tangential limit as z → ζ. When it

exists (as a finite complex number), this limit is denoted by ϕ′(ζ). By the Julia-

Carathéodory Theorem (see, e.g., [7, Theorem 2.44] or [19, Chapter 4]),

|ϕ′(ζ)| = d(ζ) := lim inf
z→ζ

1 − |ϕ(z)|

1 − |z|
,

where the lim inf is taken as z approaches ζ unrestrictedly in D. Throughout this

paper, let F (ϕ) denote the set of all points in ∂D at which ϕ has a finite angular

derivative. A necessary condition for the composition operator Cϕ to act compactly

on H2 is that F (ϕ) is empty; see [20] or [7, Corollarly 3.14]. This condition, however,

is not sufficient unless ϕ is of bounded multiplicity (see [7, Corollary 3.21]).

2.2. Clark measures. Suppose that ϕ is an analytic self-map of D and α is

a complex number of modulus 1. Since Re((α+ ϕ)/(α− ϕ)) is a positive harmonic

function on D, there exists a finite positive Borel measure µα on ∂D such that

1 − |ϕ(z)|2

|α− ϕ(z)|2
= Re

(α+ ϕ(z)

α− ϕ(z)

)

=

∫

∂D

Pz dµα

for each z ∈ D, where Pz(e
iθ) = (1 − |z|2)/|eiθ − z|2 is the Poisson kernel at z.

The measures µα are called the Clark measures of ϕ. There is a unique pair of

measures µac
α and µ

s
α such that µα = µac

α + µs
α, where µ

ac
α and µ

s
α are the absolutely

continuous and singular parts with respect to Lebesgue measure, respectively. The
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singular part µs
α is carried by ϕ

−1({α}), the set of those ζ in ∂D where ϕ(ζ) exists

and equals α, and is itself the sum of the pure point measure

(2) µppα =
∑

ϕ(ζ)=α

1

|ϕ′(ζ)|
δζ ,

where δζ is the unit point mass measure at ζ and a continuous singular measure µ
cs
α ,

either of which can vanish. In particular, if ϕ is a linear-fractional non-automorphism

such that ϕ(ζ) = η for some ζ, η ∈ ∂D, then µs
α = 0 when α 6= η and µs

η =

|ϕ′(ζ)|−1δζ . We write E(ϕ) for the closure in ∂D of the union of the closed supports

of µs
α as α ranges over the unit circle. Therefore, by Equation (2), F (ϕ) ⊆ E(ϕ).

The measures µα were introduced as an operator-theoretic tool by D.N. Clark [5]

and have been further analyzed by A. B. Aleksandrov [1], A.G. Poltoratski [15] and

D.E. Sarason [17].

2.3. Cowen’s adjoint formula. In [6] Carl Cowen showed that if ϕ ∈ LFT(D)

is given by Equation (1), then

(3) C∗
ϕ = TgCσϕ

T ∗
h ,

where σϕ(z) := (āz − c̄)/(−b̄z + d̄) is a self-map of D, g(z) := (−b̄z + d̄)−1, h(z) :=

cz + d and g, h ∈ H∞. The map σϕ is called the Krein adjoint of ϕ; we will write σ

for σϕ except when confusion could arise. If ϕ(ζ) = η for ζ, η ∈ ∂D, then σ(η) = ζ.

Also, ϕ is an automorphism if and only if σ is, and in this case σ = ϕ−1. For further

details see, for example, [3].

We know that if ϕ(D) ⊆ D, then Cϕ is compact (see, e.g., [19]). Let ζ1, ζ2, η1, η2 ∈

∂D and ζ1 6= ζ2. Assume that ϕ1, ϕ2 ∈ LFT(D) are not automorphisms and that

ϕ1(ζ1) = η1 and ϕ2(ζ2) = η2. Suppose that 1 6 i, j 6 2 and i 6= j. We see that

ϕi ◦ σj takes ∂D into D, so ‖ϕi ◦ σj‖∞ < 1 and Cϕi◦σj
is compact on H2. Also, it is

clear that σj ◦ ϕi takes ∂D into D, when ηj 6= ηi; therefore, we have ‖σj ◦ ϕi‖∞ < 1

and Cσj◦ϕi
is compact on H2. We will use these two facts frequently in this paper.

2.4. Parabolic linear-fractional self-map of D. A map ϕ ∈ LFT(D) whose

fixed point set, relative to the Riemann sphere, consists of a single point ζ in ∂D

is termed parabolic. In [19, p. 3] J. H. Shapiro has shown that among the linear-

fractional non-automorphisms fixing ζ ∈ ∂D, the parabolic ones are characterized by

ϕ′(ζ) = 1; for further details see [3] and [19].

In the rest of this section, we state some useful definitions and results of [11] that

we will need in the sequel.
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2.5. The class S and S(2). For ζ ∈ F (ϕ), the first-order data of ϕ at ζ is given

by the vector D1(ϕ, ζ) := (ϕ(ζ), ϕ′(ζ)). In what follows, we look at higher-order

data vectors

Dk(ϕ, ζ) := (ϕ(ζ), ϕ′(ζ), ϕ′′(ζ), . . . , ϕ(k)(ζ))

at points where the corresponding derivatives make sense.

We say an analytic self-map ϕ of D has an order of contact c > 0 at ζ if |ϕ(ζ)| = 1

and
1 − |ϕ(eiθ)|2

|ϕ(ζ) − ϕ(eiθ)|c

is essentially bounded above and away from zero as eiθ → ζ.

We say an analytic self-map ϕ of D has a kth-order data at ζ in F (ϕ) if there exist

complex numbers b0, b1, . . . , bk with |b0| = 1 such that

ϕ(z) = b0 + b1(z − ζ) + . . .+ bk(z − ζ)k + o(|z − ζ|k)

as z → ζ unrestrictedly in D. In this case for any 1 6 j 6 k, j!bj is the non-

tangential limit of ϕ(j)(z) at ζ (see, for example, the argument on p. 47 in [17]); we

refer to this limit as ϕ(j)(ζ). Note that since |b0| = 1 and ζ ∈ F (ϕ), b1 is the angular

derivative ϕ′(ζ).

We say an analytic self-map ϕ of D has sufficient data at ζ in ∂D if

(i) ζ ∈ F (ϕ);

(ii) ϕ has an order of contact 2m at ζ for some natural number m;

(iii) ϕ has a (2m)th-order data at ζ.

Suppose that ϕ has a finite angular derivative at ζ. Also, let it have an analytic

continuation to a neighborhood of ζ and |ϕ| < 1 a.e. on ∂D. For any α in ∂D,

consider the linear-fractional transformation τα(z) := i(α − z)/(α + z) which takes

the unit disk onto the upper half-plane Ω := {w : Imw > 0} and α to 0. Let

u := τϕ(ζ) ◦ ϕ ◦ τ−1
ζ . Then for w near zero, u(w) =

∞
∑

n=1
anw

n. In [11, p. 2930]

Kriete et al. have shown that the smallest natural number n with an non-real must

be even. Let n = 2m. Also, they have proved that ϕ has an order of contact 2m

at ζ. In particular, let ϕ be a non-automorphism linear-fractional self-map of D with

ϕ(ζ) = η for some ζ, η ∈ ∂D. Assume that for any α ∈ ∂D, we define the linear-

fractional transformation Sα(z) := (1 + αz)/(1− αz) which takes the unit disk onto

the right half-plane Π and α to ∞. Set φ := Sη ◦ ϕ ◦ S−1
ζ . Since φ(∞) = ∞, the

function φ(z) = λz + b. Also, ϕ = S−1
η ◦ (λz + b) ◦ Sζ and ϕ(D) ( D. Therefore,

λ > 0, Re b > 0 and u = τη ◦ ϕ ◦ τ−1
ζ = τη ◦ S−1

η ◦ (λz + b) ◦ Sζ ◦ τ
−1
ζ . By some
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computations, Sζ ◦ τ
−1
ζ (z) = i/z and hence τη ◦ S−1

η = i/z. Thus,

u(z) = (i/z) ◦ (λz + b) ◦ (i/z) =

∞
∑

n=0

(−1)n
bn

(i)nλn+1
zn+1.

Therefore, ϕ has an order of contact 2 at ζ and has sufficient data at ζ. Let S be the

class of analytic self-maps ϕ of D for which E(ϕ) is a finite set (so that E(ϕ) = F (ϕ))

and ϕ has sufficient data at each point of F (ϕ). We denote by S(2) the set of those ϕ

in S which have an order of contact two at each point of F (ϕ).

We write L for the collection of all non-automorphism linear-fractional self-maps ϕ

of D with ‖ϕ‖∞ = 1. It is obvious that each linear-fractional transformation ψ is

determined by its second-order data D2(ψ, z0) at each point z0 of analyticity. Now

assume that ϕ ∈ S(2) and ζ0 ∈ F (ϕ). In [11, p. 2940] Kriete et al. have shown that

the unique linear-fractional transformation ϕ0 with D2(ϕ0, ζ0) = D2(ϕ, ζ0) belongs

to L.

3. Some results on essential normality of the operators TwCϕ

The set of all bounded operators and the set of all compact operators from H2

into itself are denoted by B(H2) and B0(H
2), respectively. We will use the no-

tation A ≡ B to indicate that the difference of two bounded operators A and B

belongs to B0(H
2). In [10] Kriete et al. have shown that if ϕ ∈ LFT(D) is not an

automorphism which satisfies ϕ(ζ) = η for some ζ, η ∈ ∂D, then

(4) C∗
ϕ ≡ |ϕ′(ζ)|−1Cσ.

In Theorem 3.1, Mw denotes the operator on L
2 = L2(∂D) of multiplication by

a bounded measurable function w.

Theorem 3.1 ([11], Proposition 5.19). Suppose that ϕ ∈ S(2) with F (ϕ) =

{ζ1, . . . , ζr}. For i = 1, . . . , r, let ϕi be the unique linear-fractional transformation

with D2(ϕi, ζi) = D2(ϕ, ζi). Also assume that w is a bounded measurable function

on ∂D which is continuous at each point of F (ϕ). Then

MwCϕ ≡ w(ζ1)Cϕ1
+ . . .+ w(ζr)Cϕr

,

where the operators are considered as mapping H2 to L2.
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Now we restate Theorem 3.1 in terms of Toeplitz operators.

Corollary 3.2. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in

Theorem 3.1. Then

(5) TwCϕ ≡ w(ζ1)Cϕ1
+ . . .+ w(ζr)Cϕr

,

where the operators are considered as mapping H2 to H2.

P r o o f. We know thatMwCϕ = TwCϕ+HwCϕ, where the Hankel operator Hw

is the operator from H2 into the orthogonal complement of H2 in L2(∂D) and is

defined by Hw(g) = (I − P )(wg) for each g ∈ H2. By the proof of Corollary 2.2

in [10], HwCϕ is compact, so the result follows from Theorem 3.1. �

Let ϕ ∈ S(2) with F (ϕ) = {ζ1, . . . , ζr}. For each 1 6 i 6 r, suppose that σi is the

Krein adjoint of ϕi, where ϕi is the linear-fractional transformation related to ϕ and

ζi is as Theorem 3.1. By the preceding corollary

(6) (TwCϕ)∗ ≡ w(ζ1)C
∗
ϕ1

+ . . .+ w(ζr)C
∗
ϕr
.

Therefore, Corollary 3.2 and Equations (4), (5), and (6) imply that

(TwCϕ)∗TwCϕ ≡ (w(ζ1)C
∗
ϕ1

+ . . .+ w(ζr)C
∗
ϕr

)(w(ζ1)Cϕ1
+ . . .+ w(ζr)Cϕr

)(7)

≡ (w(ζ1)|ϕ
′(ζ1)|

−1Cσ1
+ . . .+ w(ζr)|ϕ

′(ζr)|
−1Cσr

)

× (w(ζ1)Cϕ1
+ . . .+ w(ζr)Cϕr

)

≡ |w(ζ1)|
2|ϕ′(ζ1)|

−1Cϕ1◦σ1
+ . . .+ |w(ζr)|

2|ϕ′(ζr)|
−1Cϕr◦σr

,

where the last equivalence is justified by the fact that Cϕi◦σj
∈ B0(H

2) for each

1 6 i, j 6 r and i 6= j.

Proposition 3.3. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in

Theorem 3.1. If the restriction of ϕ to F (ϕ) is a 1-1 function, then

[TwCϕ, (TwCϕ)∗] ≡ |w(ζ1)|
2|ϕ′(ζ1)|

−1(Cσ1◦ϕ1
− Cϕ1◦σ1

) + . . .(8)

+ |w(ζr)|
2|ϕ′(ζr)|

−1(Cσr◦ϕr
− Cϕr◦σr

).

P r o o f. Since the restriction of ϕ to F (ϕ) is a 1-1 function, Cσj◦ϕi
∈ B0(H

2)

for each 1 6 i, j 6 r and i 6= j. Thus, as in the proof of Equation (7), we see that

TwCϕ(TwCϕ)∗ ≡ |w(ζ1)|
2|ϕ′(ζ1)|

−1Cσ1◦ϕ1
+ . . .+ |w(ζr)|

2|ϕ′(ζr)|
−1Cσr◦ϕr

.

The conclusion follows from the above equivalence and Equation (7). �
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We infer from [10, Proposition 3.4] that ϕi ◦ σi and σi ◦ ϕi belong to L with the

fixed points ϕi(ζi) and ζi, respectively. Now we present some notation used in [11],

then we state a theorem that we will use frequently.

We fix ϕ1, . . . , ϕn in S. Therefore, F := F (ϕ1) ∪ . . . ∪ F (ϕn) is a finite set. For

ζ ∈ F and k = 2, 4, 6, . . ., let

Nk(ζ) := {j : ζ belongs to F (ϕj) and ϕj has the order of contact k at ζ}.

Also we write εk(ζ) := {Dk(ϕj , ζ) : j ∈ Nk(ζ)}.

Theorem 3.4 ([11], Theorem 5.13). Suppose that ϕ1, . . . , ϕn are in S. Given

complex numbers c1, . . . , cn, the following are equivalent:

(i) c1Cϕ1
+ . . .+ cnCϕn

is compact on Dβ ;

(ii) for each ζ ∈ F , every even k > 2 and every d in εk(ζ),

∑

j∈Nk(ζ)
Dk(ϕj ,ζ)=d

cj = 0.

Proposition 3.5. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in

Theorem 3.1. Let the restriction of ϕ to F (ϕ) be a 1-1 function. Assume that

ζ ∈ F (ϕ) is a fixed point of ϕ with ϕ′(ζ) 6= 1. If TwCϕ is essentially normal, then

w(ζ) = 0.

P r o o f. Without loss of generality, we can assume ζ1 = ζ. Since the restriction

of ϕ to F (ϕ) is a 1-1 function, there are only two linear-fractional transformations

ϕ1 ◦ σ1 and σ1 ◦ ϕ1 in Equation (8) with the same fixed point at ζ1. By [19, p. 3],

ϕ1 is not a parabolic non-automorphism and Kriete et al. in [10, p. 139] have shown

that in this case ϕ1 ◦ σ1 6= σ1 ◦ ϕ1. Now apply Theorem 3.4 to ζ = ζ1, k = 2 and

d = D2(ϕ1 ◦ σ1, ζ1). �

Throughout this paper, let ϕ[0] be the identity map on D and ϕ[j+1] := ϕ ◦ ϕ[j]

for each j ∈ N∪ {0}. For any n ∈ N and ζ ∈ F (ϕ), let ϕ[−n]({ζ}) be the set of all z,

where ϕ[n](z) = ζ. Also, if n = 0, then ϕ[−n]({ζ}) := {ζ}.

Proposition 3.6. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in

Theorem 3.1. Let the restriction of ϕ to F (ϕ) be a 1-1 function. Suppose that there

are ζ ∈ F (ϕ) and η /∈ F (ϕ) with ϕ(ζ) = η. If TwCϕ is essentially normal, then

w(ζ) = 0 and, moreover, if for every i, 1 6 i 6 n, ϕ[−i]({ζ}) ∩ F (ϕ) 6= ∅ whenever

n ∈ N and 1 6 n < r, then w(z) = 0 for z ∈ ϕ[−i]({ζ}) ∩ F (ϕ).
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P r o o f. For convenience, let ζ1 = ζ and {ζi+1} = ϕ[−i]({ζ1}) ∩ F (ϕ), where

0 < i 6 n. Since the restriction of ϕ to F (ϕ) is a 1-1 function, there is only one

linear-fractional transformation ϕ1 ◦ σ1 in Equation (8) which has a finite angular

derivative at η. Hence by Theorem 3.4, w(ζ1) = 0, so one has

[TwCϕ, (TwCϕ)∗] ≡ |w(ζ2)|
2|ϕ′(ζ2)|

−1(Cσ2◦ϕ2
− Cϕ2◦σ2

)(9)

+ . . .+ |w(ζr)|
2|ϕ′(ζr)|

−1(Cσr◦ϕr
− Cϕr◦σr

) ≡ 0.

Since ϕ2 ◦ σ2 is the only linear-fractional transformation in Equation (9) with the

fixed point at ζ1, Theorem 3.4 implies that w(ζ2) = 0. Using similar arguments, the

result follows. �

Proposition 3.7. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in

Theorem 3.1. Let the restriction of ϕ to F (ϕ) be a 1-1 function. Also assume that

there is a smallest integer n, 1 < n 6 r, such that ϕ(ζ1) = ζ2, . . . , ϕ(ζn−1) = ζn and

ϕ(ζn) = ζ1. If TwCϕ is essentially normal, then {ϕi ◦σi : 1 6 i 6 n} = {σi ◦ϕi : 1 6

i 6 n} and for each 1 6 i, j 6 n, |w(ζi)|2|ϕ′(ζi)|−1 = |w(ζj)|2|ϕ′(ζj)|−1 or w(ζi) = 0

for any 1 6 i 6 n.

P r o o f. Without loss of generality, we can assume n < r. Let TwCϕ be essen-

tially normal. We infer from Equation (8) that

[TwCϕ, (TwCϕ)∗]

≡ (|w(ζ1)|
2|ϕ′(ζ1)|

−1Cσ1◦ϕ1
− |w(ζn)|2|ϕ′(ζn)|

−1Cϕn◦σn
)

+ (|w(ζ2)|
2|ϕ′(ζ2)|

−1Cσ2◦ϕ2
− |w(ζ1)|

2|ϕ′(ζ1)|
−1Cϕ1◦σ1

)

+ . . .+ (|w(ζn)|2|ϕ′(ζn)|−1Cσn◦ϕn
− |w(ζn−1)|

2|ϕ′(ζn−1)|
−1Cϕn−1◦σn−1

)

+ |w(ζn+1)|
2|ϕ′(ζn+1)|

−1(Cσn+1◦ϕn+1
− Cϕn+1◦σn+1

) + . . .

+ |w(ζr)|
2|ϕ′(ζr)|

−1(Cσr◦ϕr
− Cϕr◦σr

).

It is obvious that ϕn ◦ σn(ζ1) = σ1 ◦ ϕ1(ζ1) = ζ1, ϕ1 ◦ σ1(ζ2) = σ2 ◦ ϕ2(ζ2) =

ζ2, . . ., and ϕn−1 ◦ σn−1(ζn) = σn ◦ ϕn(ζn) = ζn. Now we define the permu-

tation τ on {1, . . . , n} by τ(i) = i − 1, when 1 < i 6 n and τ(1) = n. If

{ϕk ◦ σk : 1 6 k 6 n} = {σk ◦ ϕk : 1 6 k 6 n}, then for each 1 6 i, j 6 n,

|w(ζi)|2|ϕ′(ζi)|−1 = |w(ζj)|2|ϕ′(ζj)|−1. This may be seen as follows. Suppose that

for some 1 6 i, j 6 n, |w(ζi)|2|ϕ′(ζi)|−1 6= |w(ζj)|2|ϕ′(ζj)|−1. Hence there is

1 6 j0 6 n, where |w(ζj0 )|
2|ϕ′(ζj0 )|

−1 6= |w(ζτ(j0))|
2|ϕ′(ζτ(j0))|

−1. Since σj0 ◦ ϕj0
and ϕτ(j0) ◦ στ(j0) are the only two linear-fractional transformations in the above

equivalence with the same fixed point at ζj0 , by Theorem 3.4, |w(ζj0 )|
2|ϕ′(ζj0 )|

−1 =

|w(ζτ(j0))|
2|ϕ′(ζτ(j0))|

−1, so it is a contradiction. Let w(ζi0 ) 6= 0 for some 1 6 i0 6 n
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and {ϕi ◦ σi : 1 6 i 6 n} 6= {σi ◦ ϕi : 1 6 i 6 n}. Then there is 1 6 k0 6 n

with σk0 ◦ ϕk0 6= ϕτ(k0) ◦ στ(k0). Moreover, as we observed above, there are exactly

two linear-fractional transformations σk0 ◦ ϕk0 and ϕτ(k0) ◦ στ(k0) in the preceding

equivalence with the same fixed point at ζk0 . Hence by Theorem 3.4, w(ζk0 ) =

w(ζτ(k0)) = 0. Since στ(k0) ◦ ϕτ(k0) and ϕτ2(k0) ◦ στ2(k0) are the only two linear-

fractional transformations in the preceding equivalence with the same fixed point

at ζτ(k0) and w(ζτ(k0)) = 0, again by Theorem 3.4, w(ζτ2(k0)) = 0. By a similar

argument, we see that for each 1 6 j 6 n, w(ζj) = 0, which is a contradiction. �

For an analytic self-map ϕ of D, let Pϕ denote the set of ζ ∈ F (ϕ), where ϕ(ζ) = ζ

and ϕ′(ζ) = 1. It is clear that Pϕ has at most one element (see, e.g., [7, Theo-

rem 2.48]). Let ϕ ∈ S(2) and let ϕi0 be the linear-fractional transformation related

to ϕ and ζi0 as in Theorem 3.1 with ϕ(ζi0 ) = ζi0 and ϕ
′(ζi0 ) = 1. Hence by Re-

mark 2.6 (a) (i) in [3], ϕi0 ◦ σi0 = σi0 ◦ ϕi0 , where σi0 is the Krein adjoint of ϕi0 .

Therefore, if the restriction of ϕ to F (ϕ) is a 1-1 function and Pϕ is a nonempty set,

then Equation (8) shows that the member of Pϕ has no effect on essential normality

of TwCϕ.

Theorem 3.8. Suppose that ϕ, ϕ1, . . . , ϕr, ζ1, . . . , ζr, w and F (ϕ) are as in Theo-

rem 3.1. Let the restriction of ϕ to F (ϕ) be a 1-1 function. Then TwCϕ is essentially

normal if and only if for each ζ ∈ F (ϕ) − Pϕ, w(ζ) takes one of the following:

(i) If ζ is the fixed point of ϕ and ϕ′(ζ) 6= 1, then w(ζ) = 0.

(ii) If ϕ(ζ) = η with η /∈ F (ϕ), then w(ζ) = 0 and moreover, if for every i, 1 6 i 6 n,

ϕ[−i]({ζ}) ∩ F (ϕ) 6= ∅ whenever n ∈ N and 1 6 n < r, then w(z) = 0 for

z ∈ ϕ[−i]({ζ}) ∩ F (ϕ).

(iii) Assume that w(ζ) is not zero in Statement (i) or (ii), i.e., there is the smallest

integer n, 1 < n 6 r, such that ϕ[n](ζ) = ζ. For convenience, let h1 = ζ,

h2 = ϕ(ζ), . . . , hn = ϕ[n−1](ζ). For each 1 6 i 6 n, let φi be the linear-

fractional transformation related to ϕ and hi as in Theorem 3.1; also ςi be the

Krein adjoint of φi. Then {φi ◦ ςi : 1 6 i 6 n} = {ςi ◦ φi : 1 6 i 6 n} and for

each 1 6 i, j 6 n, |w(hi)|2|ϕ′(hi)|−1 = |w(hj)|2|ϕ′(hj)|−1 or w(hi) = 0 for any

1 6 i 6 n.

P r o o f. Let TwCϕ be essentially normal. Then by Propositions 3.5 and 3.6,

Statements (i) and (ii) hold. Suppose that we cannot obtain the value of w(ζ) from

Statement (i) or (ii). Since the restriction of ϕ to F (ϕ) is a 1-1 function and F (ϕ) is

a finite set, there is a smallest integer n, 1 < n 6 r, such that ϕ[n](ζ) = ζ, so by

Proposition 3.7, the proof is complete.

Conversely, without loss of generality we can assume that ζr ∈ Pϕ, there is a small-

est natural number n, 1 < n < r, with ϕ(ζ1) = ζ2, . . . , ϕ(ζn−1) = ζn, ϕ(ζn) = ζ1
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and for each i > n and i 6= r, w(ζi) = 0. Thus, Equation (8) implies that

[TwCϕ, (TwCϕ)∗]

≡ (|w(ζ1)|
2|ϕ′(ζ1)|

−1Cσ1◦ϕ1
− |w(ζn)|2|ϕ′(ζn)|

−1Cϕn◦σn
)

+ . . .+ (|w(ζn)|2|ϕ′(ζn)|−1Cσn◦ϕn
− |w(ζn−1)|

2|ϕ′(ζn−1)|
−1Cϕn−1◦σn−1

)

+ |w(ζr)|
2|ϕ′(ζr)|

−1(Cσr◦ϕr
− Cϕr◦σr

).

As we observed before, ζr has no effect on the essential normality of TwCϕ. Hence

by Theorem 3.4, TwCϕ is essentially normal. �

Now for ϕ ∈ S(2), suppose that the restriction of ϕ to F (ϕ) is not a 1-1 function.

Let

F (ϕ) = {ζr0 , ζr0+1, . . . , ζr1−1, ζr1 , ζr1+1, . . . , ζrn−1−1, ζrn−1
,(10)

ζrn−1+1, . . . , ζrn−1, ζrn
, ζrn+1

, . . . , ζrn+k
}

for some n, k ∈ N ∪ {0} such that

ϕ(ζr0) = ϕ(ζr0+1) = . . . = ϕ(ζr1−1), . . . , ϕ(ζrn−1
)(11)

= ϕ(ζrn−1+1) = . . . = ϕ(ζrn−1)

and let the restriction of ϕ to {ζr0 , ζr1 , . . . , ζrn−1
, ζrn

, ζrn+1
, . . . , ζrn+k

} be a 1-1 func-

tion. From now on, unless otherwise stated, let Ai = {ζri
, ζri+1, . . . , ζri+1−1} and

ζri+1−1 = ζri+|Ai|−1 for each 0 6 i 6 n + k; furthermore, suppose that ϕri+h is

the linear-fractional transformation related to ϕ and ζri+h as in Theorem 3.1, where

ζri+h ∈ F (ϕ); also assume that σri+h is the Krein adjoint of ϕri+h. Let ζri+h, ζrj+t ∈

F (ϕ). It is obvious that Cϕri+h◦σrj+t
/∈ B0(H

2) if and only if i = j and t = h. Also,

Cσrj+t◦ϕri+h
/∈ B0(H

2) if and only if ϕ(ζri+h) = ϕ(ζrj+t). Therefore, by these facts,

Equation (4) and after some patient calculations, one obtains

[TwCϕ, (TwCϕ)∗] ≡ |w(ζr0)|
2|ϕ′(ζr0)|

−1Cσr0
◦ϕr0

(12)

+ w(ζr0 )w(ζr0+1)|ϕ
′(ζr0+1)|

−1Cσr0+1◦ϕr0
+ . . .

+ |w(ζr1−1)|
2|ϕ′(ζr1−1)|

−1Cσr1−1◦ϕr1−1
+ . . .

+ |w(ζrn−1)|
2|ϕ′(ζrn−1)|

−1Cσrn−1◦ϕrn−1
+ . . .

+ |w(ζrn
)|2|ϕ′(ζrn

)|−1Cσrn◦ϕrn
+ . . .

+ |w(ζrn+k
)|2|ϕ′(ζrn+k

)|−1Cσrn+k
◦ϕrn+k
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− (|w(ζr0 )|
2|ϕ′(ζr0)|

−1Cϕr0
◦σr0

+ |w(ζr0+1)|
2|ϕ′(ζr0+1)|

−1Cϕr0+1◦σr0+1
+ . . .

+ |w(ζrn−1)|
2|ϕ′(ζrn−1)|

−1Cϕrn−1◦σrn−1

+ |w(ζrn
)|2|ϕ′(ζrn

)|−1Cϕrn◦σrn
+ . . .

+ |w(ζrn+k
)|2|ϕ′(ζrn+k

)|−1Cϕrn+k
◦σrn+k

).

Proposition 3.9. Suppose that ϕ and w are as in Theorem 3.1 and F (ϕ) is as

in Equation (10). In accordance with Equation (11), for each 0 6 i < n we assume

that ϕ(ζri
) = ϕ(ζri+1) = . . . = ϕ(ζri+1−1). If TwCϕ is essentially normal, then the

values of w(ζri
), . . . , w(ζri+1−1) are all zero except at most one of them.

P r o o f. Without loss of generality, we can assume that w(ζri
) 6= 0 and

w(ζri+1) 6= 0. Let B = {σri
◦ ϕri

, σri+1 ◦ ϕri
, . . . , σri+1−1 ◦ ϕri

}. Every linear-

fractional transformation in Equation (12) which has a finite angular derivative

at ζri
belongs to B or

{ϕrj+h ◦ σrj+h : 0 6 j 6 n+ k, 0 6 h 6 |Aj | − 1 and ϕrj+h(ζrj+h) = ζri
}.

Now apply Theorem 3.4 to k = 2 and d = D2(σri+1◦ϕri
, ζri

); hence w(ζri
)w(ζri+1) =

0, which is a contradiction. �

By the preceding proposition and Equation (12), we can assume that

[TwCϕ, (TwCϕ)∗]

≡ |w(ζr0 )|
2|ϕ′(ζr0)|

−1(Cσr0
◦ϕr0

− Cϕr0
◦σr0

) + . . .

+ |w(ζrn−1
)|2|ϕ′(ζrn−1

)|−1(Cσrn−1
◦ϕrn−1

− Cϕrn−1
◦σrn−1

)

+ |w(ζrn
)|2|ϕ′(ζrn

)|−1(Cσrn◦ϕrn
− Cϕrn◦σrn

) + . . .

+ |w(ζrn+k
)|2|ϕ′(ζrn+k

)|−1(Cσrn+k
◦ϕrn+k

− Cϕrn+k
◦σrn+k

).

In the next theorem ϕ and w are as in Theorem 3.1 and F (ϕ) is as in Equation (10).

In accordance with Equation (11), for each 0 6 i < n we assume that ϕ(ζri
) =

ϕ(ζri+1) = . . . = ϕ(ζri+1−1). Furthermore, G(ϕ) in Statements (iii) and (iv) of the

theorem is

G(ϕ) := {ζ : ζ ∈ F (ϕ) and w(ζ) is not zero in Statement (i)}.

Theorem 3.10. The operator TwCϕ is essentially normal if and only if for each

ζ ∈ F (ϕ) − Pϕ, w(ζ) satisfies one of the following conditions:

(i) For each 0 6 i < n, the values of w(ζri
), . . . , w(ζri+1−1) are all zero except at

most one of them.
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(ii) If ζ is the fixed point of ϕ and ϕ′(ζ) 6= 1, then w(ζ) = 0.

(iii) If ϕ(ζ) = η for η /∈ G(ϕ), then w(ζ) = 0 and moreover, if for every j, 1 6 j 6 m,

ϕ[−j]({ζ}) ∩G(ϕ) 6= ∅ whenever m ∈ N and 1 6 m < |G(ϕ)|, then w(z) = 0 for

z ∈ ϕ[−j]({ζ}) ∩G(ϕ).

(iv) Suppose that w(ζ) is not zero in Statement (i) or (ii) or (iii), i.e., there is a small-

est integer n0, 1 < n0 6 |G(ϕ)|, such that ϕ[n0](ζ) = ζ. For convenience, assume

that h1 = ζ, h2 = ϕ(ζ), . . . , hn0
= ϕ[n0−1](ζ). For each 1 6 i 6 n0, let φi be the

linear-fractional transformation related to ϕ and hi be as in Theorem 3.1; let

ςi be the Krein adjoint of φi. Then {φi ◦ ςi : 1 6 i 6 n0} = {ςi ◦φi : 1 6 i 6 n0}

and for every 1 6 i, j 6 n0, |w(hi)|2|ϕ′(hi)|−1 = |w(hj)|2|ϕ′(hj)|−1 or w(hi) = 0

for any 1 6 i 6 n0.

P r o o f. Let TwCϕ be essentially normal. Without loss of generality, by Propo-

sition 3.9 we can assume that w(ζri+h) = 0 when h 6= 0 and 0 6 i 6 n − 1. Thus,

G(ϕ) ⊆ {ζr0 , ζr1 , . . . , ζrn−1
, ζrn

, . . . , ζrn+k
}. Since the restriction of ϕ to G(ϕ) is

a 1-1 function, Theorem 3.8 gives the desired conclusion.

Conversely, the conclusion follows from Theorem 3.8. �

For each ϕi ∈ L, let σi be the Krein adjoint of ϕi and let ζi ∈ F (ϕi). In the

remainder of this section, we investigate the essential normality problem for certain

finite linear combinations of linear-fractional composition operators.

Proposition 3.11. Suppose that r, n ∈ N, 1 6 r 6 n, and c1, . . . , cn ∈ C.

Assume that ϕ1, . . . , ϕn ∈ L are pairwise distinct. Let F (ϕi) = {ζi} and ζ ∈
r
⋂

i=1

F (ϕi) −
n
⋃

i=r+1

F (ϕi). Also for each 1 6 j 6 r, let ϕj(ζ) /∈ {ϕi(ζ) : 1 6 i 6

r and i 6= j}. Furthermore, assume there is at most one integer i0 ∈ {1, . . . , r} such

that ϕi0(ζ) ∈
n
⋃

i=1

F (ϕi). If c1Cϕ1
+ . . .+ cnCϕn

is essentially normal, then the values

of c1, . . . , cr are all zero except at most ci0 .

P r o o f. We infer from Equation (4) that

[c1Cϕ1
+ . . .+ cnCϕn

, (c1Cϕ1
+ . . .+ cnCϕn

)∗](13)

≡
∑

ϕj(ζj)=ϕi(ζi)

cicj |ϕ
′
j(ζj)|

−1Cσj◦ϕi
−

∑

ζj=ζi

cicj|ϕ
′
j(ζj)|

−1Cϕi◦σj

≡
∑

ϕj(ζj)=ϕi(ζi)

cicj |ϕ
′
j(ζj)|

−1Cσj◦ϕi
−

∑

16i,j6r

cicj |ϕ
′
j(ζj)|

−1Cϕi◦σj

−
∑

ζj=ζi

i,j>r

cicj |ϕ
′
j(ζj)|

−1Cϕi◦σj
.
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For j0 6= i0 and 1 6 j0 6 r, let B = {ϕj0 ◦ σj0} ∪ {ϕi ◦ σi : r < i and ϕi(ζi) =

ϕj0(ζj0 )}. It is clear that every linear-fractional transformation in the above equiv-

alence which sends ϕj0(ζj0 ) to ϕj0(ζj0 ) belongs to B. Now apply Theorem 3.4 to

k = 2 and d = D2(ϕj0 ◦ σj0 , ϕj0(ζj0)); hence there is a finite set I, I ⊆ {i : i >

r and ϕi(ζi) = ϕj0(ζj0 )}, such that

|cj0 |
2|ϕ′

j0
(ζj0 )|

−1 +
∑

i∈I

|ci|
2|ϕ′

i(ζi)|
−1 = 0.

Hence cj0 = 0, as desired. �

Let n ∈ N. In the next theorem for each 1 6 i 6 n, ci, ϕi, ζi and F (ϕi) are

as in Proposition 3.11 and F :=
n
⋃

i=1

F (ϕi). Also, if for some subset {i1, . . . , im} ⊆

{1, . . . , n},

(14)

m
⋂

l=1

F (ϕil ) −
⋃

i6=il
16l6m

F (ϕi) 6= ∅,

then for each 1 6 l 6 m, ϕil(ζil) /∈ {ϕij (ζij ) : 1 6 j 6 m and j 6= l}; moreover, there

is at most one integer j0 ∈ {1, . . . ,m} such that ϕij0 (ζij0 ) ∈ F . Furthermore, G in

Statement (iii) of the theorem is

G := {ζ : ζ ∈ F (ϕi) and ci is not zero in Statement (i) for some 1 6 i 6 n}.

Theorem 3.12. The operator c1Cϕ1
+ . . . + cnCϕn

is essentially normal if and

only if for each 1 6 j 6 n when ζj /∈ Pϕj
, cj satisfies one of the following conditions:

(i) Suppose that ϕr1(ζr1) = . . . = ϕrk
(ζrk

) for 1 6 r1, . . . , rk 6 n and ϕi(ζi) 6=

ϕr1(ζr1) when 1 6 i 6 n and i /∈ {r1, . . . , rk}. Then the values of cr1 , . . . , crk

are all zero except at most one of them.

(ii) If ζi is the fixed point of ϕi and ϕ
′
i(ζi) 6= 1, then ci = 0.

(iii) If ϕr(ζr) /∈ G when 1 6 r 6 n, then cr = 0 and moreover, if for each j,

1 6 j 6 k, ϕ−1
r1

◦ . . .◦ϕ−1
rj

({ζr})∩G 6= ∅ whenever k ∈ N and 1 6 r1, . . . , rk 6 n,

then cr1 = . . . = crk
= 0.

(iv) Assume that ci is not zero in the preceding statements, i.e., there are distinct

integers 1 6 r1, . . . , rk 6 n such that {ζi, ζr1 , . . . , ζrk
} ⊆ G and ϕr1 ◦ . . . ◦ ϕrk

◦

ϕi(ζi) = ζi. Let B = {i, r1, . . . , rk}. Then {ϕj ◦σj : j ∈ B} = {σj ◦ϕj : j ∈ B}

and for every j, h ∈ B, |cj |2|ϕ′
j(ζj)|

−1 = |ch|2|ϕ′
h(ζh)|

−1, or for each j ∈ B,

cj = 0.
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P r o o f. Let c1Cϕ1
+. . .+cnCϕn

be essentially normal. Without loss of generality,

by Proposition 3.11 and Equation (13), we can assume that there exists an integerm,

1 6 m 6 n, such that for all distinct integers 1 6 i, j 6 m, F (ϕi) ∩ F (ϕj) = ∅ and

[c1Cϕ1
+ . . . + cnCϕn

, (c1Cϕ1
+ . . .+ cnCϕn

)∗]

≡
∑

ϕj(ζj)=ϕi(ζi)
16i,j6m

cicj |ϕ
′
j(ζj)|

−1Cσj◦ϕi
−

m
∑

i=1

|ci|
2|ϕ′

i(ζi)|
−1Cϕi◦σi

.

Now let A = {ζi : 1 6 i 6 m}. We can rewrite

A = {ζr0 , ζr0+1, . . . , ζr1−1, ζr1 , ζr1+1, . . . , ζrp−1−1, ζrp−1
,

ζrp−1+1, . . . , ζrp−1, ζrp
, ζrp+1

, . . . , ζrp+k
}

for some p, k ∈ N ∪ {0} such that

ϕ(ζr0) = ϕ(ζr0+1) = . . . = ϕ(ζr1−1), . . . , ϕ(ζrp−1
) = ϕ(ζrp−1+1) = . . . = ϕ(ζrp−1)

and for each integer i, 0 6 i 6 k, the value of ϕ(ζri+p
) is not equal to ϕ(ζ) for each

ζ ∈ A − {ζri+p
}. Also, there exists an integer t, 0 6 t 6 k, such that ϕri+p

(ζri+p
) =

ζri+p
and ϕ′

ri+p
(ζri+p

) = 1 for any t 6 i 6 k. As we observed before, for any i,

t 6 i 6 k, ϕri+p
◦ σri+p

= σri+p
◦ ϕri+p

; hence ζri+p
has no effect on the essential

normality of c1Cϕ1
+ . . .+ cnCϕn

. Therefore, we can see that

[c1Cϕ1
+ . . .+ cnCϕn

, (c1Cϕ1
+ . . .+ cnCϕn

)∗]

≡ |cr0 |
2|ϕ′

r0
(ζr0)|

−1Cσr0
◦ϕr0

+ cr0cr0+1|ϕ
′
r0+1(ζr0+1)|

−1Cσr0+1◦ϕr0
+ . . .

+ |cr1−1|
2|ϕ′

r1−1(ζr1−1)|
−1Cσr1−1◦ϕr1−1

+ . . .

+ |crp−1|
2|ϕ′

rp−1(ζrp−1)|
−1Cσrp−1◦ϕrp−1

+ . . .

+ |crp
|2|ϕ′

rp
(ζrp

)|−1Cσrp◦ϕrp
+ . . .+ |crp+t

|2|ϕ′
rp+t

(ζrp+t
)|−1Cσrp+t

◦ϕrp+t

− (|cr0 |
2|ϕ′

r0
(ζr0)|

−1Cϕr0
◦σr0

+ |cr0+1|
2|ϕ′

r0+1(ζr0+1)|
−1Cϕr0+1◦σr0+1

+ . . .

+ |crp−1|
2|ϕ′

rp−1(ζrp−1)|
−1Cϕrp−1◦σrp−1

+ |crp
|2|ϕ′

rp
(ζrp

)|−1Cϕrp◦σrp
+ . . .

+ |crp+t
|2|ϕ′

rp+t
(ζrp+t

)|−1Cϕrp+t
◦σrp+t

).

The above equivalence is like Equation (12), so the result follows from a proof similar

to that of Theorem 3.10.

Conversely, suppose that for some subset {i1, . . . , im} ⊆ {1, . . . , n}, Equation (14)

holds. By the hypothesis, there is at most one integer j0, 1 6 j0 6 m, such that

ϕij0 (ζij0 ) ∈ F . Since G ⊆ F , Statement (iii) implies that the values of ci1 , . . . , cim
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are all zero except at most cij0 . Hence without loss of generality we can assume

that there is a smallest natural number k, 1 < k < n, with ϕ1(ζ1) = ζ2, . . . ,

ϕk−1(ζk−1) = ζk and ϕk(ζk) = ζ1, and for each integer i, k + 1 < i < n, ci = 0;

moreover, ϕk+1(ζk+1) = ζk+1 and ϕ
′
k+1(ζk+1) = 1. Thus, Equation (13) implies that

[c1Cϕ1
+ . . . + cnCϕn

, (c1Cϕ1
+ . . .+ cnCϕn

)∗]

≡
k+1
∑

i=1

|ci|
2|ϕ′

i(ζi)|
−1Cσi◦ϕi

−
k+1
∑

i=1

|ci|
2|ϕ′

i(ζi)|
−1Cϕi◦σi

≡ (|c1|
2|ϕ′

1(ζ1)|
−1Cσ1◦ϕ1

− |ck|
2|ϕ′

k(ζk)|
−1Cϕk◦σk

) + . . .

+ (|ck|
2|ϕ′

k(ζk)|
−1Cσk◦ϕk

− |ck−1|
2|ϕ′

k−1(ζk−1)|
−1Cϕk−1◦σk−1

)

+ |ck+1|
2|ϕ′

k+1(ζk+1)|
−1(Cσk+1◦ϕk+1

− Cϕk+1◦σk+1
).

As we mentioned before, ζk+1 has no effect on the essential normality of c1Cϕ1
+ . . .+

cnCϕn
. Hence by Theorem 3.4, c1Cϕ1

+ . . .+ cnCϕn
is essentially normal. �

In the following remark, we compare the results which were obtained in [3] with

Theorem 3.12 when n = 1.

Remark 3.13. Suppose that ϕ ∈ LFT(D) is not an automorphism and that

ϕ(ζ) = η for some ζ, η ∈ ∂D. Then F (ϕ) = {ζ} and we have:

(a) If ζ 6= η, then by Theorem 3.12, Cϕ is not essentially normal (see [3, Theo-

rem 6.1]).

(b) If ζ = η and ϕ′(ζ) 6= 1, then Theorem 3.12 implies that Cϕ is not essentially

normal (see [3, Theorem 5.2]).

(c) If ζ = η and ϕ′(ζ) = 1, then ϕ is parabolic. We infer from Theorem 3.12 that

Cϕ is essentially normal (see [3, Theorem 4.1]).

Remark 3.14. For 1 6 i 6 n, let ϕi be a non-automorphism linear-fractional

self-map of D and B = {i : 1 6 i 6 n and ‖ϕi‖∞ = 1}. Assume that for each i ∈ B,

ϕi, ζi and F (ϕi) satisfy the hypotheses of Theorem 3.12. Let for any i ∈ B, wi be

a bounded measurable function on ∂D which is continuous at ζi. Suppose that for

i /∈ B, wi ∈ L∞(∂D). We know that if ‖ϕ‖∞ < 1, then Cϕ is compact. Therefore,

for c1, . . . , cn ∈ C, Corollary 2.2 in [10] implies that

c1Tw1
Cϕ1

+ . . .+ cnTwn
Cϕn

≡
∑

i∈B

ciwi(ζi)Cϕi
.

Hence by Theorem 3.12 we can characterize the essentially normal finite linear com-

binations of these operators on H2.
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