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Abstract. In 1999 Nina Zorboska and in 2003 P.S.Bourdon, D.Levi, S.K.Narayan
and J. H. Shapiro investigated the essentially normal composition operator Cy,, when ¢ is
a linear-fractional self-map of D. In this paper first, we investigate the essential normality
problem for the operator T Cy, on the Hardy space H 2 where w is a bounded measurable
function on D which is continuous at each point of F(¢), p € S(2), and T}, is the Toeplitz
operator with symbol w. Then we use these results and characterize the essentially normal
finite linear combinations of certain linear-fractional composition operators on H 2,
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MSC 2010: 47B33

1. INTRODUCTION

Let D be the open unit disk in the complex plane C, 9D be its boundary, and
Hol(D) denotes the space of all holomorphic functions on D.

For an analytic function f on the unit disk and 0 < r < 1, we define the dilated
function f, by f.(el?) = f(re'?). It is easy to see that the functions f, are continuous
on 9D for each 7, hence they are in LP(0D, df/2n), where df/2n is the normalized
arc length measure on the unit circle.

For 0 < p < oo, the Hardy space HP(D) = HP is the set of all analytic functions
on the unit disk for which

» ey pdd
||f||p = Ssup |fr(€ )| o < 0.
o<r<1.Jo T
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Also we recall that H>(D) = H® is the space of all bounded analytic functions
defined on D, with the supremum norm || f||cc = sup|f(z)|. We know that for p > 1,
zeD

H? is a Banach space (see, e.g., [8, p. 37]). For more information about the Hardy
spaces see, for example, [7] and [8]. For 8 > 1, let Dg denote the reproducing kernel
Hilbert space of functions analytic in the unit disk D and having the kernel functions
K., (2) = (1 —wz)~P. The Hardy space H? is exactly D;.

For each ¢ € L*°(9D), we define the Toeplitz operator Ty, on H? by Ty(f) =
P(¢f), where P denotes the orthogonal projection of L?(0D) onto H?. Since an
orthogonal projection has norm 1, clearly T, is bounded. For any analytic self-
map ¢ of D, the composition operator Cy, on H? is defined by Cy(f) = fop. It is
well known (see, e.g., [8, p. 29] or [16, Theorem 1]) that the composition operators
are bounded on each of the Hardy spaces H? (0 < p < 00).

A mapping of the form

az+b

1) o) = 0 (ad —be £ 0)

is called a linear-fractional transformation. We denote the set of those linear-
fractional transformations that take the open unit disk D into itself by LFT(D).
It is well known that the automorphisms of the unit disk, that is, the one-to-one
analytic maps of the disk onto itself, are just the functions ¢(z) = A(a — z)/(1 — az),
where |A] =1 and |a| < 1.

For bounded operators A and B on a Hilbert space, we use the notation [A4, B] :=
AB — BA for the commutator of A and B. Recall that an operator A is called normal
if [A, A*] = 0 and essentially normal if [A4, A*] is compact. In 1969, H. J. Schwartz [18]
showed that a composition operator on H? is normal if and only if it is induced by
a dilation z — az, where |a|] < 1. In [21] Nina Zorboska has characterized the
essentially normal composition operators induced on the Hardy space H? by auto-
morphisms of the unit disk. In addition, Zorboska has shown that the composi-
tion operators induced on H? by linear-fractional transformations fixing no point
on the unit circle are not nontrivially essentially normal. P.S. Bourdon, D. Levi,
S.K. Narayan, and J. H. Shapiro in [3] have shown that a composition operator in-
duced on H? by a linear-fractional self-map of the unit disk is nontrivially essentially
normal if and only if it is induced by a parabolic non-automorphism. The essen-
tially normal composition operators on other spaces have been investigated by some
authors (see, e.g., [4], [12], and [13]).

If ¢ and v are linear-fractional self-maps of D or By, then C, — Cy cannot be
non-trivially compact; i.e., if the difference is compact, either C, and C,, are individ-
ually compact or ¢ = 1. The fact that a difference of linear-fractional composition
operators cannot be non-trivially compact on H? or A2(D) was first obtained by
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P.S. Bourdon [2] and J. Moorhouse [14] as a consequence of results on the compact-
ness of a difference of more general composition operators in one variable. Recently
there has been a great interest in studying some linear combinations of composition
operators; see, for example, [9] and [11].

In this paper, we use the results of T.L. Kriete and J.L. Moorhouse [11] and
T.L. Kriete, B.D. MacCluer and J.L. Moorhouse [10] in order to investigate the
essential normality problem for certain finite linear combinations of linear-fractional

composition operators on H?2.

2. PRELIMINARIES

Here we collect the fundamental facts about some definitions and results which
are required in the sequel.

2.1. Angular derivatives. Let ¢ be an analytic self-map of D. We say that
© has a finite angular derivative at ¢ on the unit circle if there is 1 on the unit circle
such that (¢(z) —n)/(z — () has a finite non-tangential limit as z — (. When it
exists (as a finite complex number), this limit is denoted by ¢'(¢). By the Julia-
Carathéodory Theorem (see, e.g., [7, Theorem 2.44] or [19, Chapter 4]),

, e L= ()]
I¢'(C)] = d(¢) :=liminf —=—75,
where the liminf is taken as z approaches ¢ unrestrictedly in D. Throughout this
paper, let F'(¢) denote the set of all points in OD at which ¢ has a finite angular
derivative. A necessary condition for the composition operator Cy, to act compactly
on H? is that F (i) is empty; see [20] or [7, Corollarly 3.14]. This condition, however,
is not sufficient unless ¢ is of bounded multiplicity (see [7, Corollary 3.21]).

2.2. Clark measures. Suppose that ¢ is an analytic self-map of D and « is
a complex number of modulus 1. Since Re((o + ¢)/(ov — ¢)) is a positive harmonic
function on D, there exists a finite positive Borel measure i, on 9D such that

LleEl _po(2EEE - [ g

la = o(2)[? a—p(2)

for each z € D, where P,(e?) = (1 — |z|?)/]e!? — 2| is the Poisson kernel at z.
The measures u, are called the Clark measures of ¢. There is a unique pair of
measures p3° and pf, such that p, = p° + uf,, where p2° and 1, are the absolutely
continuous and singular parts with respect to Lebesgue measure, respectively. The
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singular part x5, is carried by ¢~ ({a}), the set of those ¢ in D where ¢ () exists
and equals «, and is itself the sum of the pure point measure

1
(2) wE =Y e
&2 170

where ¢ is the unit point mass measure at ¢ and a continuous singular measure 1,
either of which can vanish. In particular, if ¢ is a linear-fractional non-automorphism
such that ¢(¢() = n for some (,n € 9D, then uy = 0 when o # n and p; =
|’ (C)|716¢. We write E(p) for the closure in OD of the union of the closed supports
of i, as « ranges over the unit circle. Therefore, by Equation (2), F(¢) C E(y).
The measures p, were introduced as an operator-theoretic tool by D.N. Clark [5]
and have been further analyzed by A.B. Aleksandrov [1], A. G. Poltoratski [15] and
D.E. Sarason [17].

2.3. Cowen’s adjoint formula. In [6] Carl Cowen showed that if ¢ € LET(D)
is given by Equation (1), then

(3) C, =T,C,, T},

where 0, (z) := (az — €)/(—bz + d) is a self-map of D, g(2) := (=bz +d)~!, h(z) =
cz+d and g,h € H*°. The map o, is called the Krein adjoint of ¢; we will write o
for o, except when confusion could arise. If p(¢) = n for {,n € 9D, then o(n) = ¢.
Also, ¢ is an automorphism if and only if o is, and in this case ¢ = ¢~ !. For further
details see, for example, [3].

We know that if ¢(D) C D, then C, is compact (see, e.g., [19]). Let (1, {2, m1,m2 €
0D and (3 # (2. Assume that ¢1,¢o € LFT(D) are not automorphisms and that
©1(¢1) = m and ¢2((2) = n2. Suppose that 1 < ¢, < 2 and ¢ # j. We see that
i 0 0; takes OD into D, so ||¢; 0 0j]lec < 1 and Cy,00, is compact on H?. Also, it is

clear that o; o ¢; takes D into D, when n; # n;; therefore, we have ||o; 0 ¢;]|0c < 1
and Cy 0, is compact on H 2. We will use these two facts frequently in this paper.

2.4. Parabolic linear-fractional self-map of D. A map ¢ € LFT(D) whose
fixed point set, relative to the Riemann sphere, consists of a single point ¢ in 0D
is termed parabolic. In [19, p. 3] J.H. Shapiro has shown that among the linear-
fractional non-automorphisms fixing ¢ € 9D, the parabolic ones are characterized by
¢'(€) = 1; for further details see [3] and [19].

In the rest of this section, we state some useful definitions and results of [11] that
we will need in the sequel.
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2.5. The class S and §(2). For ¢ € F(p), the first-order data of ¢ at ( is given
by the vector D1(¢,¢) := (¢(¢), ¢’ (€)). In what follows, we look at higher-order
data vectors

Di(#,¢) = (¢(0),¢' (©), ¢"(€), -, ™ (0))

at points where the corresponding derivatives make sense.
We say an analytic self-map ¢ of D has an order of contact ¢ > 0 at ¢ if |¢(¢)| =1
and
1~ Jp(e?)]?
p(¢) — p(e®)|°

is essentially bounded above and away from zero as el — (.
We say an analytic self-map ¢ of D has a kth-order data at ¢ in F'(y) if there exist
complex numbers by, by, ..., b with |bg| = 1 such that

0(z) =bo+b1(z—C) +...+bp(z—OF +o(|z — ¢|¥)

as z — ( unrestrictedly in D. In this case for any 1 < j < k, jlb; is the non-
tangential limit of ) (2) at ¢ (see, for example, the argument on p. 47 in [17]); we
refer to this limit as () (¢). Note that since |bo| = 1 and ¢ € F(y), by is the angular
derivative ¢’ (¢).

We say an analytic self-map ¢ of D has sufficient data at ¢ in 9D if

(i) ¢ € F(v);
(if) ¢ has an order of contact 2m at ¢ for some natural number m;
(iii) ¢ has a (2m)th-order data at .

Suppose that ¢ has a finite angular derivative at (. Also, let it have an analytic
continuation to a neighborhood of ¢ and |p| < 1 a.e. on dD. For any « in 0D,
consider the linear-fractional transformation 7,(z) := i(a — z)/(c + z) which takes
the unit disk onto the upper half-plane  := {w: Imw > 0} and « to 0. Let

U 1= Tye) 0P O Tc_l. Then for w near zero, u(w) = > apw™. In [11, p. 2930]
=1

Kriete et al. have shown that the smallest natural nurnbne; n with a,, non-real must
be even. Let n = 2m. Also, they have proved that ¢ has an order of contact 2m
at (. In particular, let ¢ be a non-automorphism linear-fractional self-map of D with
¢(¢) = n for some ¢,n € OD. Assume that for any a € 9D, we define the linear-
fractional transformation S, (z) := (1 +@z)/(1 — @z) which takes the unit disk onto
the right half-plane II and « to co. Set ¢ := S, 0 ¢ o S{l. Since ¢(oc0) = oo, the
function ¢(z) = Az +b. Also, ¢ = S; ' o (Az +b) 0 S¢ and (D) C D. Therefore,
A >0, Reb>0 anduZTnOQOOTgl ZTWOST]_10(/\Z+I))OS<OT51. By some
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computations, S¢ o Tc_l(z) =i/z and hence 7, 0 S;"! =i/z. Thus,

(=) = (3/2) 0 (e +) 0 (1/2) = 3 (=1 ™™

n=0

Therefore, ¢ has an order of contact 2 at ¢ and has sufficient data at (. Let S be the
class of analytic self-maps ¢ of D for which E(¢p) is a finite set (so that E(p) = F(¢))
and ¢ has sufficient data at each point of F'(¢). We denote by S(2) the set of those ¢
in § which have an order of contact two at each point of F(i).

We write L for the collection of all non-automorphism linear-fractional self-maps ¢
of D with ||¢]lcc = 1. It is obvious that each linear-fractional transformation 1 is
determined by its second-order data Ds (1), zg) at each point zg of analyticity. Now
assume that ¢ € S(2) and (g € F(p). In [11, p. 2940] Kriete et al. have shown that
the unique linear-fractional transformation ¢g with D2 (¢, o) = D2(p, (o) belongs
to L.

3. SOME RESULTS ON ESSENTIAL NORMALITY OF THE OPERATORS T,C,

The set of all bounded operators and the set of all compact operators from H?2
into itself are denoted by B(H?) and By(H?), respectively. We will use the no-
tation A = B to indicate that the difference of two bounded operators A and B
belongs to Bo(H?). In [10] Kriete et al. have shown that if ¢ € LFT(D) is not an
automorphism which satisfies ¢({) = 7 for some ¢, n € 9D, then

(4) s =19 ()1 Co

In Theorem 3.1, M, denotes the operator on L? = L?(0D) of multiplication by
a bounded measurable function w.

Theorem 3.1 ([11], Proposition 5.19). Suppose that ¢ € S(2) with F(p) =
{¢1y...,¢ ) Fori=1,...,r, let ¢; be the unique linear-fractional transformation
with Do(vi, () = Da(p, (). Also assume that w is a bounded measurable function
on 0D which is continuous at each point of F(y). Then

M,Cy =w(1)Cy, + ... +w(()Cy, ,

where the operators are considered as mapping H? to L.
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Now we restate Theorem 3.1 in terms of Toeplitz operators.

Corollary 3.2. Suppose that ¢, ¢©1,...,¢r, C1,...,(, w and F(p) are as in
Theorem 3.1. Then

(5) TwCyp =w(C1)Cop, + ...+ w((r)Cyp,,

where the operators are considered as mapping H? to H2.

Proof. Weknow that M,,C, = T:,C,+ H,C,, where the Hankel operator H,,
is the operator from H? into the orthogonal complement of H? in L?(0D) and is
defined by H,(g9) = (I — P)(wg) for each g € H?. By the proof of Corollary 2.2
in [10], H,,C,, is compact, so the result follows from Theorem 3.1. O

Let ¢ € §(2) with F(p) = {(1,...,¢ }. For each 1 < i < r, suppose that o; is the
Krein adjoint of ¢;, where ¢; is the linear-fractional transformation related to ¢ and
(i is as Theorem 3.1. By the preceding corollary

(6) (TwCy)" =w(G)Cy, + ... +w(G)Cy, .

Therefore, Corollary 3.2 and Equations (4), (5), and (6) imply that

(7) (TwC,) " TwCyp = (w(C)Cg, + ... +w(()CE ) (w(C)Cop, + - +w((r)Clyp, )
( -

(C1)|30'(C1)|_1Cm +.+ w(Cr)lspl(Q")l_lcar)
(w(cl)CQC’l .t w(C"")CQOT)
|w(C1 |2|90/(<1)|_1CLP100'1 +...+ |w(CT)|2|90/(<T)|_1C Yo

X g

where the last equivalence is justified by the fact that Cy,or, € Bo(H?) for each
1<i,j<randi##j.

Proposition 3.3. Suppose that ¢, p1,...,¢r, C1,...,(, w and F(p) are as in
Theorem 3.1. If the restriction of ¢ to F(yp) is a 1-1 function, then

(8) [Twcsoa (Twctp)*] = |U)(<1)|2|QD/(<1)|71(C010¢1 - C<,01001) +..
+ [w(G) 19" (€)™ (Corop, = Coron,)-

Proof. Since the restriction of ¢ to F(y) is a 1-1 function, Cy,op, € Bo(H?)
for each 1 < i,5 < r and i # j. Thus, as in the proof of Equation (7), we see that

TwCo(TuCy)" = [w(C)P|¢' QI Coropy + - -+ [w(Gr) P19 (6)| 7 Corop, -
The conclusion follows from the above equivalence and Equation (7). g
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We infer from [10, Proposition 3.4] that ¢; o 0; and o; o ; belong to £ with the
fixed points ¢;(¢;) and (;, respectively. Now we present some notation used in [11],
then we state a theorem that we will use frequently.

We fix ¢1,...,¢, in S. Therefore, F' := F(p1) U...U F(py,) is a finite set. For
(e Fand k=2,4,6,...,let

Nk (¢) :=={j: ¢ belongs to F(¢;) and ¢; has the order of contact k at (}.

Also we write ex(¢) := {Dx(¢;,¢): 7€ Ng(()}.

Theorem 3.4 ([11], Theorem 5.13). Suppose that @1,...,p, are in S. Given
complex numbers c1, ..., c,, the following are equivalent:

i) c1Cyp, + ...+ ¢y Cy, is compact on Dg;
P1 Pn B
(ii) for each ¢ € F, every even k > 2 and every d in €x((),

Z CjIO.

JENK(C)
Dy (¢;,¢)=d

Proposition 3.5. Suppose that ¢, v1,...,¢r, C1,...,(, w and F(p) are as in
Theorem 3.1. Let the restriction of ¢ to F(p) be a 1-1 function. Assume that
¢ € F(y) is a fixed point of ¢ with ¢'(() # 1. If T,,C,, is essentially normal, then

w(¢) =0.

Proof. Without loss of generality, we can assume (; = (. Since the restriction
of p to F(p) is a 1-1 function, there are only two linear-fractional transformations
1 001 and 01 o 1 in Equation (8) with the same fixed point at ¢;. By [19, p. 3],
1 is not a parabolic non-automorphism and Kriete et al. in [10, p. 139] have shown
that in this case @1 0 01 # 01 0 1. Now apply Theorem 3.4 to { = (1, k = 2 and
d = Dy(p1001,(1). [l

Throughout this paper, let % be the identity map on D and Ut = o U]

for each j € NU{0}. For any n € N and ¢ € F(p), let pl=™({¢}) be the set of all z,
where " (2) = (. Also, if n = 0, then l="({¢}) := {¢}.

Proposition 3.6. Suppose that ¢, v1,...,¢r, C1,...,(, w and F(p) are as in
Theorem 3.1. Let the restriction of ¢ to F(p) be a 1-1 function. Suppose that there
are ( € F(p) and n ¢ F(p) with ¢(¢) = n. If T,,Cy, is essentially normal, then
w(¢) = 0 and, moreover, if for every i, 1 <i < n, !=1({¢}) N F(p) # O whenever
neNand1<n<r, thenw(z) =0 for z € l=({¢}) N F(p).
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Proof. For convenience, let ¢(; = ¢ and {(;1} = ©74({G1}) N F(p), where
0 < % < n. Since the restriction of ¢ to F'(¢) is a 1-1 function, there is only one
linear-fractional transformation ¢; o o1 in Equation (8) which has a finite angular
derivative at 1. Hence by Theorem 3.4, w(¢1) = 0, so one has

9)  [TwC, (TuCy)] = [w(G) Pl¢" ()™ (Cosops = Coaons)
+...+ |w(<’l")|2|<)01(€7’)|_1(CU1'O<P'V' - C«proar) =0.

Since @y o 09 is the only linear-fractional transformation in Equation (9) with the
fixed point at (7, Theorem 3.4 implies that w((2) = 0. Using similar arguments, the
result follows. 0

Proposition 3.7. Suppose that ¢, v1,...,¢r, C1,...,(, w and F(p) are as in
Theorem 3.1. Let the restriction of ¢ to F(p) be a 1-1 function. Also assume that
there is a smallest integer n, 1 < n < r, such that ©(¢1) = (a,...,9(Ch-1) = ¢n and
©(Cn) = 1. If To,C,, is essentially normal, then {p;o0;: 1 <i<n}={o0p;: 1<
i <n} and for each 1 <i,j < n, [w(G)2l¢' (G~ = w(¢)Ple' () or w(G:) = 0
for any 1 < i < n.

Proof. Without loss of generality, we can assume n < r. Let T,,C, be essen-
tially normal. We infer from Equation (8) that

[TwCo, (TwCo)"]
= ([w(C)Pl¢' (€)™ Carogr — [w(Gn) Pl (Gn)| 7" Copyio0,)
+ ([w(GQ)P1¢' ()T Cosoga = [w(C)IP|# (G 7 Copro0,)
+o o (G Pl ()l Canog, — [W(Ca-1)Pl¢ (Gn-1)| T Cop_ro0s)
+ [ (Gr1) P19 (G )| T (Cosropnin = Copnpromuis) + -
+[w ()19 (6T (Coyop, = Coproo,)-

It is obvious that ¢, 0 0,(¢1) = 010 w1(C1) = (1, w1 001((2) = 02 0 P2(la) =
Cay ..., and wp_1 0 0,—1(Cn) = o 0 u(¢n) = G- Now we define the permu-
tation 7 on {1,...,n} by 7(4) = ¢ — 1, when 1 < ¢ < n and 7(1) = n. If
{oroor: 1 <k <n} ={oropr: 1 <k < n}, then for each 1 < 4,5 < n,
lw(G)I?10" ()7 = Jw(¢)]?¢' ()]~ This may be seen as follows. Suppose that
for some 1 < 4,5 < n, [w(G)?l@' (G # |w()?l¢'(¢) . Hence there is
1< o < n, where [w(Gio) P1! ()| # 10(Cro) I (G| - Since g, 0 5,
and @, (j,) © 0r(j,) are the only two linear-fractional transformations in the above
equivalence with the same fixed point at (j,, by Theorem 3.4, [w (¢, )%’ (o) 72 =
[w(Cr(jo))I21€" (Cr(jo))| Y, s0 it is a contradiction. Let w((;,) # 0 for some 1 < ig < n
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and {@;00;: 1 <i < n} # {o;0p;: 1 <i<n} Then thereis 1 < kg < n
with og, © Yk, # Pr(ke) © Or(ky)- Moreover, as we observed above, there are exactly
two linear-fractional transformations oy, o ¥k, and ¢, (xy) © 07 (x,) in the preceding
equivalence with the same fixed point at (i,. Hence by Theorem 3.4, w((x,) =
W(Cr(ke)) = 0. Since o (ry) © Pr(ke) and ©r2(ky) © Or2(k,) are the only two linear-
fractional transformations in the preceding equivalence with the same fixed point
at Cr(ky) and w(Cr(ky)) = 0, again by Theorem 3.4, w((r2(ky)) = 0. By a similar
argument, we see that for each 1 < j < n, w(¢;) =0, which is a contradiction. O

For an analytic self-map ¢ of D, let P, denote the set of { € F(¢), where ¢(¢) =¢
and ¢'({) = 1. It is clear that P, has at most one element (see, e.g., [7, Theo-
rem 2.48]). Let ¢ € §(2) and let ¢;, be the linear-fractional transformation related
to ¢ and (;, as in Theorem 3.1 with ¢((;,) = ¢, and ¢'(¢,) = 1. Hence by Re-
mark 2.6 (a) (i) in [3], i, © 03, = 04y © @i, Where oy, is the Krein adjoint of ;.
Therefore, if the restriction of ¢ to F(¢) is a 1-1 function and P, is a nonempty set,
then Equation (8) shows that the member of P, has no effect on essential normality
of T,Clp.

Theorem 3.8. Suppose that ¢, v1,...,¢r, C1,...,¢, w and F(p) are as in Theo-
rem 3.1. Let the restriction of ¢ to F(p) be a 1-1 function. Then T.,C,, is essentially
normal if and only if for each ¢ € F(p) — Py, w(¢) takes one of the following:

(i) If ¢ is the fixed point of ¢ and ¢'(¢) # 1, then w(¢) = 0.
(ii) Ifo(¢) = n withn ¢ F(p), then w(¢) = 0 and moreover, if for every i, 1 < i < n,
=A({¢}) N F(g) # 0 whenever n € N and 1 < n < r, then w(z) = 0 for
2 e I({CH N (o).

(iii) Assume that w(() is not zero in Statement (i) or (ii), i.e., there is the smallest
integer n, 1 < n < r, such that p!"}(¢) = ¢. For convenience, let hy = ¢,
hy = @(C),....hn = ©" Y(¢). For each 1 < i < n, let ¢; be the linear-
fractional transformation related to ¢ and h; as in Theorem 3.1; also ¢; be the
Krein adjoint of ¢;. Then {¢;0¢;: 1 <i<n}={go¢;: 1 <i<n} and for
cach 1< i,j < n, [w(h)2lg (he)| = = [w(h) Pl ()|~ or wihs) = 0 for any
1<ig<n.

Proof. Let T;,C, be essentially normal. Then by Propositions 3.5 and 3.6,
Statements (i) and (ii) hold. Suppose that we cannot obtain the value of w(¢) from
Statement (i) or (ii). Since the restriction of ¢ to F'(¢) is a 1-1 function and F'(¢p) is
a finite set, there is a smallest integer n, 1 < n < r, such that o[ (¢) = ¢, so by
Proposition 3.7, the proof is complete.

Conversely, without loss of generality we can assume that ¢, € P, there is a small-
est natural number n, 1 < n < r, with ©((1) = (2, -+, ©(C=1) = Cn, ©(Gn) = G
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and for each ¢ > n and i # r, w(¢;) = 0. Thus, Equation (8) implies that

[TwCe, (TwCe)"]
= (Jw(C)P1¢' (€)™ Coropr = [w(Gn)P1¢' (6a)| 7' Copo0,)
+ o () P10 ()7 Copopn = [w0(Ca=1) P19 (Cr=1) 7' Coprr00 )
+|w( P16 (67 (Corop, = Cproo,)-

As we observed before, ¢, has no effect on the essential normality of T3,C,. Hence
by Theorem 3.4, T,C, is essentially normal. Il

Now for ¢ € §(2), suppose that the restriction of ¢ to F () is not a 1-1 function.
Let

(10) F(SO) = {CTov CroJrla cee 7(7"1*17 Cm ) <T1+17 cee 7(7"”—1*17 CTn—U
CTn—l-‘rla ceey CT71_17 CT7L’C7"71,+1’ ceey <T7L+k}

for some n, k € NU {0} such that

(11) ©(Gro) = P(Crot1) = - = @(Cri=1)5 -+ 0(Cry)
=Gy 1+1) = = 9(Cr,—1)

and let the restriction of ¢ to {Cros Gy -5 G5 Grns Grngrs - - -3 Grngr f be a 1-1 func-
tion. From now on, unless otherwise stated, let A; = {¢,, (rig1s---5Gripy—1} and
Grisi—1 = Gr4)a,|—1 for each 0 < 4 < n + k; furthermore, suppose that ¢, p is
the linear-fractional transformation related to ¢ and ¢,,+ as in Theorem 3.1, where
Gri+n € F(p); also assume that o, 1 is the Krein adjoint of @, 1 4. Let ¢, qn, G4t €
F(p). It is obvious that Cy, 00, ., & Bo(H?) if and only if i = j and t = h. Also,
Co.r,r00r4n ¢ Bo(H?) if and only if ¢(Cr,4n) = ©(Cr,4+). Therefore, by these facts,
Equation (4) and after some patient calculations, one obtains

(12) [TwCo, (TwCy)"] = |w(Cro)|2|¢/(Cro)|_lcarowro
+ W(Grg )W (Cro+ )9 (Cro1)| ™ Corrysropng + - --
+ [w(Gr )19 (G- T Coy oy o+
+lw(Gr, -1 |<P(§r,ﬁl)| o,y ro0prpn t oo
+ (G, Ple (Gr)I™
0 )P G Con o

Urnown +...
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— (lw(Go)P1e' (Gro) |~ Cop,y00,

+ [ (Cro+1)1P1€ (Cro+1) | Clpry 1000y 40 + - - -
+ [w(Cr,— 1)1 (Gr—1)| ' Clpr r00r s

+ [w (G )Pl (Gl 7 C 00, -

F10(Grn ) P10 G T oo, )-

Proposition 3.9. Suppose that ¢ and w are as in Theorem 3.1 and F(p) is as
in Equation (10). In accordance with Equation (11), for each 0 < i < n we assume
that o(Gr,) = @(Cri41) = o = @(Griyy—1). If TyCyy is essentially normal, then the
values of w((y,), ..., w(¢r,,—1) are all zero except at most one of them.

Proof. Without loss of generality, we can assume that w({.,) # 0 and
w(Cr41) # 0. Let B = {0, © ©r;, 00,41 0 Pr;s.- 1 0p1—1 © Pp, ;. Every linear-
fractional transformation in Equation (12) which has a finite angular derivative
at ¢, belongs to B or

{er4noom1n: 0<j<n+k, 0<h<[Aj| =1 and or,4n(Gry4n) = G-
Now apply Theorem 3.4 to k = 2 and d = Da(0y,+10¢r;, Cr; ); hence w((r, )w (G, 1) =
0, which is a contradiction. ([

By the preceding proposition and Equation (12), we can assume that

[TwCo, (TwCo)"]

[0(Cra) P (Gr)| T (Croipry = Ciprgoary) + -
+ 0GP (G T Coy, o,y = Coor, oo, )
+ 1w (G, )1 (G )T (Co, o, = Copypoo,,) -

+ |w(<:""n+k)|2|<)0/(C7'n+k)|_1(C‘77‘n+k0¢7‘n+k - C¢T,L+koar,L+k )-

In the next theorem ¢ and w are as in Theorem 3.1 and F'(y) is as in Equation (10).
In accordance with Equation (11), for each 0 < ¢ < n we assume that ¢((,) =
©(Grig1) = - = @(Cr;p1—1). Furthermore, G(¢) in Statements (iii) and (iv) of the

theorem is
G(p) :={C: ¢ € F(p) and w(¢) is not zero in Statement (i)}.

Theorem 3.10. The operator T,,C,, is essentially normal if and only if for each
¢ € F(p) — Py, w(C) satisfies one of the following conditions:

(i) For each 0 < i < n, the values of w((y,), ..., w(Gr,,,—1) are all zero except at
most one of them.
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(i) If ¢ is the fixed point of ¢ and ¢'(¢) # 1, then w(¢) = 0.

(iil) If o(¢) = n forn ¢ G(p), then w(¢) = 0 and moreover, if for every j, 1 < j < m,
ol ({¢}) NG (p) # O whenever m € N and 1 < m < |G(y)|, then w(z) = 0 for
z€ P I({H) NG(w).

(iv) Suppose that w(() is not zero in Statement (i) or (ii) or (iii), i.e., there is a small-
est integer ng, 1 < ng < |G(¢)|, such that @™l (¢) = ¢. For convenience, assume
that hy = C,hy = ©((), ..., hny = @™ ~1(¢). For each 1 < i < ng, let ¢; be the
linear-fractional transformation related to ¢ and h; be as in Theorem 3.1; let
G; be the Krein adjoint of ¢;. Then {¢;0¢;: 1 <i<mo} ={siop;: 1 <i<ng}
and for every 1 < i, < no, [w(ho)[2l¢ (k)| = [w(hy) 21’ ()]~ or w(hs) = 0
for any 1 <1 < ng.

Proof. Let T,C, be essentially normal. Without loss of generality, by Propo-
sition 3.9 we can assume that w((y,+1) = 0 when h # 0 and 0 < ¢ < n — 1. Thus,
G(©) € {Go:Crise3Crn1rCrns -+ Crupny- Since the restriction of ¢ to G(y) is
a 1-1 function, Theorem 3.8 gives the desired conclusion.

Conversely, the conclusion follows from Theorem 3.8. O

For each ¢; € L, let 0; be the Krein adjoint of ¢; and let (; € F(p;). In the
remainder of this section, we investigate the essential normality problem for certain

finite linear combinations of linear-fractional composition operators.

Proposition 3.11. Suppose that r,n € N, 1 < r < n, and ¢q,...,¢c, € C.
Assume that ¢1,...,p, € L are pairwise distinct. Let F(p;) = {¢(;} and ¢ €
n

T
N F(pi) = U F(ps). Also for each 1 < j < r, let ¢;(¢) ¢ {pi(¢): 1 < ¢ <
i=1 i=r+1
r and i # j}. Furthermore, assume there is at most one integer iy € {1,...,r} such
n
that ¢;,(() € U F(wi). If c1Cy, + ...+ ¢nCy, is essentially normal, then the values

i=1
of ci,...,c, are all zero except at most c;, .

Proof. We infer from Equation (4) that

(13)  [c1Cyp + ...+ cnCy,, (c1Cy, + ...+ ¢ Cyp, )]
= Y TG T Coop = D 195G Coron,

#3(Ci)=wi(C:) ¢=Ci
= Y alef ) Coop = D el Coron,
©i (¢)=¢i(C:) 1<i,j<r
— > TG Coron,
¢=G
1,)>T
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For jo #ipand 1 < jo < r, let B = {pj, 00, } U{pioo;: m < i and ¢;({;) =
©jo(Cio)}- It is clear that every linear-fractional transformation in the above equiv-
alence which sends j,((j,) to ¢, (Cj,) belongs to B. Now apply Theorem 3.4 to
k =2 and d = Da(pj, © 0j,,¥jo(Cjo)); hence there is a finite set I, I C {i: i >
r and ¢;(§) = 5, (o)}, such that

3o P16, (Gio) 7+ 3 LIt (G = 0.

i€l
Hence c;j, = 0, as desired. O

Let n € N. In the next theorem for each 1 < i < n, ¢, ¢i, ¢; and F(p;) are
as in Proposition 3.11 and F := F(y;). Also, if for some subset {i1,...,im} C
=1

{1,...,n}, ‘

(2

then for each 1 <1 < m, ©;,(G,) & {wi;(¢i;): 1 <j<mand j# [}; moreover, there
is at most one integer jo € {1,...,m} such that ¢;; ((;; ) € F'. Furthermore, G in
Statement (iii) of the theorem is

G :={(: ¢ € F(y;) and ¢; is not zero in Statement (i) for some 1 < i < n}.

Theorem 3.12. The operator c1Cy, + ... + ¢,Cy,, is essentially normal if and
only if for each 1 < j < n when (; ¢ Py, c; satisfies one of the following conditions:

(i) Suppose that @, (¢r,) = ... = @r(G)) for 1 < 7,01 < noand 9i(G) #
©ry (Gry) when 1 < i < n andi ¢ {ry,...,ry}. Then the values of ¢,,,...,cp,
are all zero except at most one of them.

(i) If ¢; is the fixed point of ¢; and ¢;((;) # 1, then ¢; = 0.

(iii) If or(¢r) ¢ G when 1 < r < n, then ¢, = 0 and moreover, if for each j,
1<j<k oo 09 ({G NG # 0 whenever k € N and 1 < r1,...,75, < m,
then ¢, = ... =¢,, =0.

(iv) Assume that ¢; is not zero in the preceding statements, i.e., there are distinct
integers 1 < ry,...,r; < n such that {(, Gy, .-, G} C G and @p, 0...0 ¢y, ©
©0i(Gi) = G. Let B={i,r,...,rx}. Then{pjoo;: j€ B} ={ojop;: j€ B}
and for every j,h € B, |c;]*[¢}()I7" = lenl?le},(Cn)| ™", or for each j € B,
c;j =0.
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Proof. LetciCy +...+cnCy, beessentially normal. Without loss of generality,
by Proposition 3.11 and Equation (13), we can assume that there exists an integer m,
1 <m < n, such that for all distinct integers 1 < 4,5 < m, F(p;) N F(p;) =0 and

€1Cp, + ... +¢,Cy,, (1Cp, + ...+, Cy,)7]

m

= Y Gl Copop = D 1l 19H(G) T Coro -

;i (C)=¢i(Ci) i=1
1<, j<m

Now let A ={¢;: 1 <i< m}. We can rewrite

A= {Q"m CT0+17 cey CT'l—la C?"17C7‘1+1a sy CT'p_l—la C?"p_m
C?"p—1+1a s 76:7";,,—1) C?"p? CT'p+17 s 7C7"p+k}

for some p, k € NU {0} such that

©(Cro) = P(Cro+1) = - = P(Cri—1), - - - SD(CT,,A) = SD(CTp—l‘i’l) == @(Crpfl)

and for each integer i, 0 < i < k, the value of (., ,) is not equal to ¢(¢) for each
¢€A—{G,,,} Also, there exists an integer ¢, 0 < t < k, such that ¢, () =
Griyp and gp’mﬂ) (Griyp) = 1 for any t < i < k. As we observed before, for any i,
t<i<k, 0,000, = 0r,, °¢r,,; hence (., has no effect on the essential
normality of ¢;Cy, + ...+ ¢,C,,,. Therefore, we can see that

€1Cp, + ... +¢,Cy,, (c1Cp, + ...+ cnC,,)"]
= [eno 21970 (Gro)l ™ Corg oy + CroCrortlPrg 41 (Gro+ 1) Corgiropry + - -
+ler 1@ —1(Gr—1)] 7 Cory o, + -
+ler, 1210, 1(Cry—1)| 7 Co, oy 1 -
+ler 1o, (6o )T Co, o, + oo Lm0 (G T Co o
— (lerg P16 (Gro) | T Copyy 00y + [erot1 P10 11 (Grot )] ™ Clprg yr00mg 10 + - -
+ |c7"p—1|2|<)0;’p71(Crp—1)|_1ciprp—1oo'rp—l + |Crp|2|50lrp (Cr,,)rlccprpoarp +..

lery Plehy 1 G ) Co o)

The above equivalence is like Equation (12), so the result follows from a proof similar
to that of Theorem 3.10.

Conversely, suppose that for some subset {i1,...,im} C {1,...,n}, Equation (14)
holds. By the hypothesis, there is at most one integer jo, 1 < jo < m, such that
®i;, (Gi;,) € F. Since G C F, Statement (iii) implies that the values of ¢;,,...,¢;,
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are all zero except at most ¢;; . Hence without loss of generality we can assume
that there is a smallest natural number k, 1 < k < n, with v1(G1) = (o, ...,
©r-1(Ck—1) = ¢ and ¢ (¢x) = (1, and for each integer i, k+1 < i < n, ¢; = 0;
moreover, ©x11(Crt+1) = i1 and ) 1 (Cey1) = 1. Thus, Equation (13) implies that

(€10, + ... +¢nCo,, (10, + ...+ cnCy, )]

k+1 k+1
= D 1eil’ 105G Coiop, = D 1eil? 1056 Copionn
i=1 i=1

= (|11 (G| Coyopr = ler P11 (C) 1 Coppony) + - -
+ (lck|2|50;c(ck)|7100k0§% - |Ck—1|2|<P;c—1(Ck—1)|710¢k7100k71)

+ |Ck+1|2|80§c+1(Ck+1)|_1(cak+1wk+1 - C<Pk+100k+1)'

As we mentioned before, (i1 has no effect on the essential normality of ¢;1C,,, +. ..+
¢nCy, . Hence by Theorem 3.4, c1Cy, + ...+ ¢,C,, is essentially normal. g

In the following remark, we compare the results which were obtained in [3] with
Theorem 3.12 when n = 1.

Remark 3.13. Suppose that ¢ € LFT(D) is not an automorphism and that
©(¢) = n for some ¢,n € OD. Then F(p) = {¢} and we have:

(a) If ¢ # 7, then by Theorem 3.12, C, is not essentially normal (see [3, Theo-
rem 6.1]).

(b) If { = n and ¢'({) # 1, then Theorem 3.12 implies that C, is not essentially
normal (see [3, Theorem 5.2]).

(¢) If ¢ =n and ¢’'(¢) = 1, then ¢ is parabolic. We infer from Theorem 3.12 that
C, is essentially normal (see [3, Theorem 4.1]).

Remark 3.14. For 1 < i < n, let ¢; be a non-automorphism linear-fractional
self-map of D and B = {i: 1 <i < n and ||¢;||cc = 1}. Assume that for each i € B,
vi, ¢; and F(p;) satisfy the hypotheses of Theorem 3.12. Let for any ¢ € B, w; be
a bounded measurable function on dD which is continuous at ;. Suppose that for
i ¢ B, w; € L>(0D). We know that if ||¢|« < 1, then C, is compact. Therefore,
for ¢1,...,¢, € C, Corollary 2.2 in [10] implies that

c1Tw,Cyp, + ...+ 1w, Cop, = Z c;iw;i(Gi)Co, -
i€B

Hence by Theorem 3.12 we can characterize the essentially normal finite linear com-
binations of these operators on H?2.
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