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Abstract. In this paper we study a general concept of nonuniform exponential dichotomy
in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a vari-
ant for the stochastic case of some well-known results, of the deterministic case, due to R.
Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM
J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some tech-
niques used in the deterministic case for the study of asymptotic behavior of skew-evolution
semiflows in Banach spaces.
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1. Introduction

In the qualitative theory of evolution equations, exponential dichotomy is one the

most important asymptotic properties and during the last years it was treated from

various perspectives.

Several important papers on the problem of existence of stochastic semiflows for

stochastic evolution equations appeared in literature and we only mention [7], [9],

and [14]. For linear stochastic evolution equations with finite-dimensional noise,

a stochastic semiflow was obtained by Bensoussan and Flandoli in [3].
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In [13] the authors proved the existence of perfect differentiable cocycles generated

by mild solutions of a large class of semilinear stochastic evolution equations and

stochastic partial differential equations.

The exponential dichotomy property in stochastic case has been discussed by many

authors, and we refer here to the papers of Caraballo et al. in [5], Ateiwi A.M.

in [2], and Mohammend et al. in [13]. Nonuniform stability of stochastic differential

equations has been presented by the authors Buse and Barbu in [4], Da Prato and

Ichikawa in [6].

Our main objective is to give a more general concept of nonuniform exponential

dichotomy in mean square of stochastic skew-evolution semiflows in Hilbert spaces.

Thus we obtain a variant for the stochastic case of nonuniform exponential dichotomy

in mean square of some results obtained by R. Datko in [8].

Our approach is based on the extension of some techniques used in the determin-

istic case by many authors, and we mention here only M. Megan et al. in [11], [12]

and C. Stoica and M. Megan in [15]. Some of the results for uniform asymptotic

behavior in mean square of stochastic cocycles generated by stochastic differential

equations was studied by D. Stoica in the paper [16].

2. Stochastic skew-evolution semiflows

Let (Ω,ℑ, {ℑt}t>0,P) be a standard filtered probability space, X a real separable

Hilbert space, L(X) the set of all linear bounded operators from X to X and let

∆ = {(t, s) ∈ R
2
+ | t > s > 0}.

Definition 2.1. A stochastic evolution semiflow on Ω is a measurable random

field ϕ : (∆ × Ω,B(X) ×ℑ) → (Ω,ℑ) satisfying the following conditions:

1. ϕ(s, s, ω) = ω,

2. ϕ(t, s, ϕ(s, t0, ω)) = ϕ(t, t0, ω), ∀(t, s), (s, t0) ∈ ∆, ω ∈ Ω.

Example 2.1. Let X be a real separable Hilbert space and let Ω be the space of

all continuous paths ω : R+ → X such that ω(0) = 0 with the compact open topology.

Let ℑt for t > 0 be the σ-algebra generated by the set {ω → ω(u) ∈ X | u 6 t}

and let ℑ be the associated Borrel σ-algebra to Ω. If P is a Wiener measure on

Ω then (Ω,ℑ, {ℑt}t>0,P) is a filtered probability space with the Wiener motion

W (t, ω) = ω(t) for all (t, ω) ∈ R+ × Ω.

Then the mapping ϕ : (∆ × Ω,B(X)×ℑ) → (Ω,ℑ) defined by

ϕ(t, s, ω) = ω(t + s) − ω(t), ∀ω ∈ Ω

880



is a stochastic evolution semiflow on Ω. Indeed,

ϕ(s, s, ω) = ω(s), and

ϕ(t, s, ϕ(s, t0, ω)) = ϕ(t + s, t0, ω) − ϕ(t, t0, ω)

= ω(t + s + t0) − ω(t + s) − ω(t + t0) + ω(t)

= ϕ(t + t0, s, ω) − ϕ(t, s, ω) = ϕ(t, t0, ϕ(s, s, ω)) = ϕ(t, t0, ω)

for all (t, s), (s, t0) ∈ ∆ and ω ∈ Ω.

Definition 2.2. A mapping Φ: (∆ × Ω,B(T ) × ℑ × B(X)) → L(X) with the

properties

1. Φ(s, s, ω) = I (the identity operator on X), ∀s > 0, ω ∈ Ω;

2. Φ(t, t0, ω) = Φ(t, s, ϕ(s, t0, ω))Φ(s, t0, ω) for all (t, s), (s, t0) ∈ ∆ and ω ∈ Ω; is

called a stochastic evolution cocycle on X over the stochastic evolution semiflow

ϕ : (∆ × Ω,B(X)×ℑ) → (Ω,ℑ).

Definition 2.3. The mapping Θ: ∆ × Y → Y defined it by

Θ(t, s, ω, x) = (ϕ(t, s, ω), Φ(t, s, ω)x)

where Y = Ω × X , is called the stochastic skew-evolution semiflow on Y (denoted

by s.s.-e.s.), where Φ is a stochastic evolution cocycle over the stochastic evolution

semiflow ϕ on Ω, and we denote it by Θ = (ϕ, Φ).

Example 2.2. Let Θ0(t, ω, x) = (θ0(t, ω), ϕ0(t, ω)x) by the skew-product of the

metric dynamical system θ0(t, .) on Ω, generated by the Wiener shift, introduced by

Arnold L. in [1]. Then the mapping Θ = (ϕ, Φ) defined by

Θ(t, s, ω, x) = (ϕ(t, s, ω), Φ(t, s, ω)x)

is a stochastic skew-evolution semiflow on Y , where

ϕ(t, s, ω) = θ0(t − s, ω),

Φ(t, s, ω) = ϕ0(t − s, ω), ∀ (t, s) ∈ ∆, and ω ∈ Ω.

Consequently, the stochastic skew-evolution semiflow generalizes the notion of the

clasical skew-product, considered by Arnold L. in [1].

Example 2.3. Let X be a real separable Hilbert space and let {W (t)}t>0 be an

X-valued Brownian motion with a separable covariance Hilbert space H and defined

on the canonical complete filtered Wiener space (Ω,ℑ, {ℑt}t>0,P) introduced in
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Example 2.1. L(H, X) be the Banach space of all bounded linear operators from H

to X . Denote by L2(H, X) ⊂ L(H, X) the Hilbert-Schmidt operators S : H → X

with the norm ‖S‖ =
( ∞

∑

k=1

|S(fk)|2
)1/2

where | · | is the norm on H , and {fk, k > 1}

is a complete orthonormal system on H .

Consider the linear stochastic evolution equation of the form

(2.1)

{

du(t, x, ω) = Au(t, x, ω)dt + Bu(t, x, ω) dW (t), t > s;

u(s, x, ω) = x ∈ X t 6 s, ∀ω ∈ Ω

where A : D(A) ⊂ X → X is the infinitesimal operator of a strongly continuous

semigroup of bounded linear operators T (t) : X → X , t > 0, and B : X → L2(H, X)

is a bounded linear operator. Note that in [10] the authors studied the uniqueness

of C0-semigroups in locally convex vector spaces.

Suppose that B can be extended to a bounded linear operator which will be also

denoted by B : X → L(X), and the series
∞
∑

k=1

‖B2
k‖L(X) converges, where Bk : X →

X are bounded linear operator defined by Bk(x) = B(x)(fk), x ∈ X , k > 1.

A mild solution of this equation generates (see [13],[7]) a stochastic skew-evolution

semiflow Θ = (ϕ, Φ) defined by

Φ(t, s, ω)x = u(t, s, x, ω), for all (t, s) ∈ ∆, ω ∈ Ω∗, x ∈ X,

where Φ: ∆ × Ω → L(X) is a stochastic evolution cocycle over the stochastic evo-

lution semiflow ϕ : ∆ × Ω → Ω defined in Example 2.1, and u(t, s, x, ω) is the mild

solution of equation (2.1) with the initial condition u(s, s, x, ω) = x given at the time

s > 0, for all ω ∈ Ω.

3. Nonuniform exponential dichotomy in mean square

In this section we define some concepts of nonuniform dichotomy in mean square

for stochastic skew-evolution semiflows in Hilbert spaces.

Let Θ = (ϕ, Φ) be a stochastic skew-evolution semiflow on the real Hilbert space,

where Φ: ∆×Ω → L(X) is the stochastic evolution cocycle semiflow over the stochas-

tic semiflow ϕ : ∆ × Ω → Ω.

Next we suppose that there exists a sure event Ω∗ ∈ ℑ. A random variable

Z : (Ω,ℑ) → (R∗
+,B(R∗

+)) is called tempered if there exist a positive constant k and

a positive random variable Ck(ω) such that:

Z(ϕ(t, s, ω)) 6 Ck(ω)ekt for all (t, s) ∈ ∆

for ω in a sure event Ω∗ ∈ ℑ.
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In what follows we use the hypothesis that the phase space X is split into

X = X1(ω) ⊕ X2(ω)

for all ω in a sure event Ω∗ ∈ ℑ and ϕ(t, s, .)(Ω∗) = Ω∗ for all (t, s) ∈ ∆.

We denote by {Πk(ω)}k=1,2 the family of measurable projections associated with

the splitting.

The ℑ measurable subspaces X1(ω) and X2(ω) are called the stable and insta-

ble spaces, respectively. We suppose that these subspaces are invariant under the

stochastic skew-evolution semiflow Θ = (ϕ, Φ), i.e.

Φ(t, s, ω)Xk(ω) ⊂ Xk(ϕ(t, s, ω)), ∀(t, s) ∈ ∆ and ω ∈ Ω∗, k = {1, 2}.

Remark 3.1. The subspaceX1(ω) is finitely dimensional with a fixed non-random

dimension and X2(ω) is closed with a finite non-random codimension (see Caraballo

et al. in [5], Mohamend et al. in [13]).

Definition 3.1. The family of measurable projections {Πk(ω)}k=1,2 is called

compatible with the stochastic skew-evolution semiflow Θ = (ϕ, Φ) if

Πk(ϕ(t, s, ω))Φ(t, s, ω) = Φ(t, s, ω)Πk(ω)

for all (t, s) ∈ ∆ and ω ∈ Ω∗.

Next we denote

ΦΠk
(t, s, ω) = Φ(t, s, ω)Πk(ω), ∀(t, s) ∈ ∆ and ω ∈ Ω∗, k = {1, 2}.

We observe that the ΦΠk
, k = 1, 2 are stochastic evolution cocycles and

Θk(t, s, ω, x) = (ϕ(t, s, ω), ΦΠk
(t, s, ω)x), ∀(t, s) ∈ ∆, (ω, x) ∈ Y, k = {1, 2}

are stochastic skew-evolution semiflows on Y = Ω∗×X for every stochastic evolution

semiflow ϕ on Ω.

Definition 3.2. The s.s.-e.s. Θ = (ϕ, Φ) has the exponential dichotomy in

mean square if there are ϕ-invariant random variables α(ω) > 0 and ν(ω) > 0 with

α(ω) < ν(ω) and a tempered random variables N(ω) : Ω∗ → [1,∞] such that:

E‖ΦΠ1
(t, t0, ω)x‖2 6 N(ω)eα(ω)te−ν(ω)(t−s)

E‖ΦΠ1
(s, t0, ω)x‖2,(3.1)

E‖ΦΠ2
(s, t0, ω)x‖2 6 N(ω)eα(ω)te−ν(ω)(t−s)

E‖ΦΠ2
(t, t0, ω)x‖2(3.2)

for all (t, s), (s, t0) ∈ ∆, and (ω, x) ∈ Y , i.e. the stochastic evolution cocycle ΦΠ1

is exponentially stable in mean square and ΦΠ2
is exponentially instable in mean

square.
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If α = 0 then we say that the stochastic skew-evolution semiflow Θ = (ϕ, Φ) has

the uniform exponential dichotomy in mean square.

Remark 3.2. The stochastic skew-evolution semiflow Θ = (ϕ, Φ) has the expo-

nential dichotomy in mean square if there are ϕ-invariant random variables α(ω) > 0

and ν(ω) > 0 with α(ω) < ν(ω), and a tempered random variableN(ω) : Ω∗ → [1,∞]

such that

E‖ΦΠ1
(t, s, ω)x‖2 6 N(ω)eα(ω)te−ν(ω)(t−s)

E‖Π1(ω)x‖2, ∀(t, s) ∈ ∆, (ω, x) ∈ Y,

E‖ΦΠ2
(t, s, ω)x‖2

>
1

N(ω)
e−α(ω)teν(ω)(t−s)

E‖Π2(ω)x‖2, ∀(t, s) ∈ ∆, (ω, x) ∈ Y.

Definition 3.3. The s.s.-e.s. Θ = (ϕ, Φ) is called strongly measurable in mean

square if for every (t0, ω) ∈ R+×Ω∗, the mapping t 7→ E‖Φ(t, t0, ω)x‖2 is measurable

on [t,∞).

Definition 3.4. Let λ(ω) > 0 and ε(ω) > 0 be ϕ-invariant random variables

and M(ω) : Ω∗ → [1,∞] a tempered random variable. Then the s.s.-e.s. Θ = (ϕ, Φ)

is said to be

1) of exponential growth in mean square if

(3.3) E‖Φ(t, t0, ω)‖2 6 M(ω)eε(ω)seλ(ω)(t−s)
E‖Φ(s, t0, ω)‖2,

2) of exponential decay in mean square if

(3.4) E‖Φ(s, t0, ω)x‖2 6 M(ω)eε(ω)seλ(ω)(t−s)
E‖Φ(t, t0, ω)x‖2,

for all (t, s), (s, t0) ∈ ∆ and (ω, x) ∈ Y .

If ε = 0 then we obtain the above properties in the uniform case.

Definition 3.5. Let β(ω) > 0 be a ϕ-invariant random variable and K(ω) :

Ω∗ → [1,∞] a tempered random variable. Then the s.s.-e.s. Θ = (ϕ, Φ) is called

1) integrally stable in mean square if

(3.5)

∫ t

s

E‖Φ(τ, t0, ω)x‖2 dτ 6 K(ω)eβ(ω)s
E‖Φ(s, t0, ω)x‖2,

2) integrally instable in mean square if

(3.6)

∫ t

t0

E‖Φ(τ, t0, ω)x‖2 dτ < K(ω)eβ(ω)t
E‖Φ(t, t0, ω)x‖2,

for all (t, t0) ∈ ∆ and (ω, x) ∈ Y .
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Lemma 3.1. Suppose that the s.s.-e.s. Θ = (ϕ, Φ) has exponential growth in

mean square. If it is integrally stable in mean square then there is a ϕ-invariant

random variable β(ω) > 0 and a tempered random variable N(ω) : Ω∗ → [1,∞] such

that

(3.7) E‖Φ(t, t0, ω)x‖2 6 N(ω)eε(ω)seβ(ω)t
E‖Φ(s, t0, ω)x‖2

for all (t, s), (s, t0) ∈ ∆, (ω, x) ∈ Y , where ε(ω) > 0 is from Definition 3.4(1).

P r o o f. When t > s + 1 and s > t0 > 0, from Definition 3.4(1) we have

E‖Φ(t, t0, ω)x‖2 =

∫ t

t−1

E‖Φ(t, t0, ω)x‖2 dτ

6 M(ω)eε(ω)teλ(ω)

∫ t

s

E‖Φ(τ, t0, ω)x‖2 dτ

6 K(ω)M(ω)eε(ω)teλ(ω)eβ(ω)s
E‖Φ(s, t0, ω)x‖2

for all s > t0, and (ω, x) ∈ Ω × X . For t ∈ [s, s + 1] we have the relation

E‖Φ(t, t0, ω)x‖2 6 M(ω)eε(ω)seλ(ω)(t−s)
E‖Φ(s, t0, ω)x‖2

6 K(ω)M(ω)eλ(ω)eε(ω)seβ(ω)t
E‖Φ(s, t0, ω)x‖2.

Then for N(ω) = K(ω)M(ω)eλ(ω) we have the relation (3.7). �

Lemma 3.2. Suppose that the s.s.-e.s. Θ = (ϕ, Φ) has exponential decay in mean

square. If it is integrally instable in mean square then there is a ϕ-invariant random

variable β(ω) > 0 and a tempered random variable N(ω) : Ω∗ → [1,∞] such that

(3.8) E‖Φ(s, t0, ω)x‖2 6 N(ω)eε(ω)seβ(ω)t
E‖Φ(t, t0, ω)x‖2

for all (t, s), (s, t0) ∈ ∆, (ω, x) ∈ Y , where ε(ω) > 0 is from Definition 3.4(2).

P r o o f. The proof is similar to that of Lemma 3.1. �

The main result is a variant for the stochastic case of nonuniform dichotomy in

mean square of the well-known theorem due to R. Datko in [8]. An analogous result

has been proved by Megan and Lupa in [11] for nonuniform exponential dichotomy.
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Theorem 3.1. Let Θ = (ϕ, Φ) be a s.s-e.s. on the Hilbert space X , strongly

measurable in mean square, let {Πk(ω)}k=1,2 be a family of measurable projections

compatible with Θ such that ΦΠ1
has exponential growth in mean square and ΦΠ2

has exponential decay in mean square.

If there exist ϕ-invariant random variables β(ω) > 0 and γ(ω) > 0 with γ(ω) >

β(ω) and a tempered random variable K(ω) : Ω∗ → [1,∞] such that

∫ ∞

s

eγ(ω)(τ−s)
E‖ΦΠ1

(τ, t0, ω)x‖2 dτ +

∫ s

t0

eγ(ω)(s−τ)
E‖ΦΠ2

(τ, t0, ω)x‖2 dτ(3.9)

6 K(ω)eβ(ω)s(E‖ΦΠ1
(s, t0, ω)x‖2 + E‖ΦΠ2

(s, t0, ω)x‖2)

for all (t, s), (s, t0) ∈ ∆ and (ω, x) ∈ Y , then the stochastic skew-evolution semiflow

Θ = (ϕ, Φ) has exponential dichotomy in mean square.

P r o o f. Since ΦΠ1
has exponential growth in mean square we have that

eγ(ω)(t−s)ΦΠ1
(t, s, ω) has the same property. From (3.9) it follows that

∫ t

s

eγ(ω)(τ−t0)E‖ΦΠ1
(τ, t0, ω)x‖2 dτ 6 K(ω)eβ(ω)seγ(ω)(s−t0)E‖ΦΠ1

(s, t0, ω)x‖2

for all (t, s, t0) ∈ ∆ and x ∈ Im Π1(ω).

Therefore the stochastic cocycle eγ(ω)(t−t0)E‖ΦΠ1
(t, t0, ω)x‖2 is integral stable in

mean square for all (t, s), (s, t0) ∈ ∆, ω ∈ Ω∗ and by Lemma 3.1 we conclude

E‖ΦΠ1
(t, t0, ω)x‖2(3.10)

6 N(ω)e(ε(ω)+β(ω))te−(γ(ω)+ε(ω))(t−s)
E‖ΦΠ1

(s, t0, ω)x‖2.

Similarly, since ΦΠ2
has exponential decay in mean square, it follows that the opera-

tor e−γ(ω)(t−s)ΦΠ2
(t, s, ω) has also exponential decay in mean square and we obtain

that
∫ s

t0

e−γ(ω)(t−s)
E‖ΦΠ2

(τ, t0, ω)x‖2 dτ 6 K(ω)eβ(ω)se−γ(ω)(s−t0)E‖ΦΠ2
(s, t0, ω)x‖2

for all (t, s), (s, t0) ∈ ∆ and x ∈ Im Π2(ω).

Thus Lemma 3.2 yields that there exists a constant N(ω) > 1 for all ω ∈ Ω∗ such

that

(3.11) E‖ΦΠ2
(s, t0, ω)x‖2 6 N(ω)e(β(ω)+ε(ω))te−(γ(ω)+ε(ω))(t−s)

E‖ΦΠ2
(t, t0, ω)x‖2

for all (t, s), (s, t0) ∈ ∆ and (ω, x) ∈ Y .

If we denote α(ω) = β(ω)+ ε(ω) and ν(ω) = γ(ω)+ ε(ω) for all ω ∈ Ω∗, then from

the relations (3.10) and (3.11) we have that the stochastic skew-evolution semiflow

Θ = (ϕ, Φ) has exponential dichotomy in mean square. �
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