Previous |  Up |  Next

Article

Keywords:
real hypersurface; complex two-plane Grassmannians; Hopf hypersurface; commuting shape operator
Summary:
In this paper, first we introduce a new notion of commuting condition that $\phi \phi _{1} A = A \phi _{1} \phi $ between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for real hypersurfaces in $G_2({\mathbb C}^{m+2})$. Suprisingly, real hypersurfaces of type $(A)$, that is, a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in complex two plane Grassmannians $G_2({\mathbb C}^{m+2})$ satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying the commuting condition. Finally we get a characterization of Type $(A)$ in terms of such commuting condition $\phi \phi _{1} A = A \phi _{1} \phi $.
References:
[1] Alekseevskii, D. V.: Compact quaternion spaces. Funkts. Anal. Prilozh. 2 (1968), 11-20. MR 0231314
[2] Berndt, J.: Riemannian geometry of complex two-plane Grassmannian. Rend. Semin. Mat., Torino 55 (1997), 19-83. MR 1626089
[3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127 (1999), 1-14. DOI 10.1007/s006050050018 | MR 1666307 | Zbl 0920.53016
[4] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137 (2002), 87-98. DOI 10.1007/s00605-001-0494-4 | MR 1937621 | Zbl 1015.53034
[5] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47 (2010), 551-561. DOI 10.4134/BKMS.2010.47.3.551 | MR 2666376 | Zbl 1206.53064
[6] Pérez, J. D., Suh, Y. J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44 (2007), 211-235. DOI 10.4134/JKMS.2007.44.1.211 | MR 2283469 | Zbl 1156.53034
[7] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator. Bull. Aust. Math. Soc. 68 (2003), 379-393. DOI 10.1017/S0004972700037795 | MR 2027682 | Zbl 1058.53046
Partner of
EuDML logo