[1] Chew, T. S., Lee, P. Y.:
Nonabsolute integration using Vitali covers. N. Z. J. Math. 23 (1994), 25-36.
MR 1279123 |
Zbl 0832.26005
[3] Chung, K. L., Williams, R. J.:
Introduction to Stochastic Integration, 2nd edition. Birkhäuser Boston (1990).
MR 1102676
[8] Hitsuda, M.: Formula for Brownian partial derivatives. Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15.
[9] Lee, P. Y., Výborný, R.:
The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press Cambridge (2000).
MR 1756319
[11] Marraffa, V.:
A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998. Matimyás Mat. 22 (1999), 73-84.
MR 1770168
[12] McShane, E. J.:
Stochastic Calculus and Stochastic Models. Academic Press New York (1974).
MR 0443084 |
Zbl 0292.60090
[13] Mouldowney, P.: A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153. Longman Harlow (1987).
[19] Protter, P.:
Stochastic Integration and Differential Equations. Springer New York (1990).
MR 1037262 |
Zbl 0694.60047
[20] Revuz, D., Yor, M.:
Continuous Martingales and Brownian Motion, 2nd edition. Springer Berlin (1994).
MR 1303781
[21] Skorohod, A. V.:
On a generalisation of a stochastic integral. Theory Probab. Appl. 20 (1975), 219-233.
MR 0391258
[22] Stratonovich, R. L.:
A new representation for stochastic integrals and equations. J. SIAM Control 4 (1966), 362-371.
DOI 10.1137/0304028 |
MR 0196814
[23] Toh, T. L., Chew, T. S.:
A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan. World Scientific Singapore (1999), 291-299.
MR 1819215
[25] Toh, T. L., Chew, T. S.:
The non-uniform Riemann approach to multiple Itô-Wiener integral. Real Anal. Exch. 29 (2003-2004), 275-290.
MR 2061311
[26] Toh, T. L., Chew, T. S.:
On the Henstock-Fubini Theorem for multiple stochastic integral. Real Anal. Exch. 30 (2004-2005), 295-310.
MR 2127534
[27] Toh, T. L., Chew, T. S.:
On Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem. J. Math. Comput. Modeling 42 (2005), 139-149.
DOI 10.1016/j.mcm.2004.03.008 |
MR 2162393
[29] Toh, T. L., Chew, T. S.:
On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes. Math. Bohem. 130 (2005), 63-73.
MR 2128359 |
Zbl 1112.26012
[30] Toh, T. L., Chew, T. S.:
Henstock's version of Itô's formula. Real Anal. Exch. 35 (2009-2010), 375-3901-20.
MR 2683604
[31] Weizsäcker, H., G., G. Winkler:
Stochastic Integrals: An introduction. Friedr. Vieweg & Sohn (1990).
MR 1062600 |
Zbl 0718.60049
[33] Xu, J. G., Lee, P. Y.:
Stochastic integrals of Itô and Henstock. Real Anal. Exch. 18 (1992-1993), 352-366.
MR 1228401
[35] Zähle, M.:
Integration with respect to fractal functions and stochastic calculus I. Probab. Th. Rel. Fields 111 (1998), 337-374.
MR 1640795 |
Zbl 0918.60037