Previous |  Up |  Next

Article

Keywords:
four-point boundary value problem; one-signed solution; bifurcation method
Summary:
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems $$ -u''+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ) $$ and $$ u''+Mu=rg(t)f(u), \quad u(0)=u(\varepsilon ),\quad u(1)=u(1-\varepsilon ), $$ where $\varepsilon \in (0,{1}/{2})$, $M\in (0,\infty )$ is a constant and $r>0$ is a parameter, $g\in C([0,1],(0,+\infty ))$, $f\in C(\mathbb {R},\mathbb {R})$ with $sf(s)>0$ for $s\neq 0$. The proof of the main results is based upon bifurcation techniques.
References:
[1] Chu, J., Sun, Y., Chen, H.: Positive solutions of Neumann problems with singularities. J. Math. Anal. Appl. 337 (2008), 1267-1272 \MR 2386375. DOI 10.1016/j.jmaa.2007.04.070 | MR 2386375 | Zbl 1142.34315
[2] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) \MR 0787404. MR 0787404 | Zbl 0559.47040
[3] Jiang, D., Liu, H.: Existence of positive solutions to second order Neumann boundary value problems. J. Math. Res. Expo. 20 (2000), 360-364. MR 1787796 | Zbl 0963.34019
[4] Li, X., Jiang, D.: Optimal existence theory for single and multiple positive solutions to second order Neumann boundary value problems. Indian J. Pure Appl. Math. 35 (2004), 573-586. MR 2071406 | Zbl 1070.34038
[5] Li, Z.: Positive solutions of singular second-order Neumann boundary value problem. Ann. Differ. Equations 21 (2005), 321-326. MR 2175705 | Zbl 1090.34524
[6] Ma, R., Thompson, B.: Nodal solutions for nonlinear eigenvalue problems. Nonlinear Anal., Theory Methods Appl. 59 (2004), 707-718. DOI 10.1016/j.na.2004.07.030 | MR 2096325 | Zbl 1059.34013
[7] Miciano, A. R., Shivaji, R.: Multiple positive solutions for a class of semipositone Neumann two-point boundary value problems. J. Math. Anal. Appl. 178 (1993), 102-115. DOI 10.1006/jmaa.1993.1294 | MR 1231730 | Zbl 0783.34016
[8] Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1971), 487-513. DOI 10.1016/0022-1236(71)90030-9 | MR 0301587 | Zbl 0212.16504
[9] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York (2008). MR 2572243
[10] Sun, J., Li, W.: Multiple positive solutions to second-order Neumann boundary value problems. Appl. Math. Comput. 146 (2003), 187-194. DOI 10.1016/S0096-3003(02)00535-0 | MR 2007778 | Zbl 1041.34013
[11] Sun, J., Li, W., Cheng, S.: Three positive solutions for second-order Neumann boundary value problems. Appl. Math. Lett. 17 (2004), 1079-1084. DOI 10.1016/j.aml.2004.07.012 | MR 2087758 | Zbl 1061.34014
[12] Sun, Y., Cho, Y. J., O'Regan, D.: Positive solution for singular second order Neumann boundary value problems via a cone fixed point theorem. Appl. Math. Comput. 210 (2009), 80-86 \MR 2504122. DOI 10.1016/j.amc.2008.11.025 | MR 2504122
Partner of
EuDML logo