Previous |  Up |  Next

Article

Keywords:
approximate Kurzweil-Henstock integral; approximate continuity; local system; variational measure
Summary:
The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation.
References:
[1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506-524. DOI 10.1016/S0022-247X(02)00146-4 | MR 1923649 | Zbl 1010.26006
[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases. Czech. Math. J. 56(131) (2006), 559-578. DOI 10.1007/s10587-006-0037-1 | MR 2291756
[3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603. Springer Berlin (1995). MR 1369575
[4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$. Real Anal. Exch. 23 (1997), 611-630. DOI 10.2307/44153985 | MR 1639992
[5] Ene, V.: Thomson's variational measure. Real Anal. Exch. 24 (1998), 523-565. DOI 10.2307/44152978 | MR 1704732 | Zbl 0968.26007
[6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1991), 154-168. MR 1087481 | Zbl 0723.26005
[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals. J. Chungcheong Math. Soc. 17 (2004), 103-110.
[8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral. Bull. Korean Math. Soc. 42 (2005), 535-541. DOI 10.4134/BKMS.2005.42.3.535 | MR 2162209 | Zbl 1090.26002
[9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals. Czech. Math. J. 57(132) (2007), 689-696. DOI 10.1007/s10587-007-0106-0 | MR 2337623 | Zbl 1174.26308
[10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics. 109 Cambridge (1993). MR 1268404
[11] Saks, S.: Theory of the Integral. G. E. Stechert & Co New York (1937). Zbl 0017.30004
[12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis. Mosc. Univ. Math. Bull. 57 (2002), 37-40. MR 1933126
[13] Thomson, B. S.: Derivation bases on the real line. Real Anal. Exch. 8 (1983), 67-207, 278-442. DOI 10.2307/44151585 | Zbl 0525.26003
[14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics. 1170 Springer Berlin (1985). MR 0818744
[15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems. Real Anal. Exch. 19 (1994), 248-253. Zbl 0802.26004
Partner of
EuDML logo