[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.:
Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases. Czech. Math. J. 56(131) (2006), 559-578.
DOI 10.1007/s10587-006-0037-1 |
MR 2291756
[3] Ene, V.:
Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603. Springer Berlin (1995).
MR 1369575
[6] Gordon, R. A.:
The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1991), 154-168.
MR 1087481 |
Zbl 0723.26005
[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals. J. Chungcheong Math. Soc. 17 (2004), 103-110.
[10] Pfeffer, W. F.:
The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics. 109 Cambridge (1993).
MR 1268404
[11] Saks, S.:
Theory of the Integral. G. E. Stechert & Co New York (1937).
Zbl 0017.30004
[12] Sworowski, P., Skvortsov, V. A.:
Variational measure determined by an approximative differential basis. Mosc. Univ. Math. Bull. 57 (2002), 37-40.
MR 1933126
[14] Thomson, B. S.:
Real Functions. Lecture Notes in Mathematics. 1170 Springer Berlin (1985).
MR 0818744
[15] Wang, C., Ding, C. S.:
An integral involving Thomson's local systems. Real Anal. Exch. 19 (1994), 248-253.
Zbl 0802.26004