Previous |  Up |  Next

Article

Keywords:
integrability; Henstock-Kurzweil integral; ordered Banach space; order cone; chain; fixed point; functional integral equation; Volterra; Cauchy problem; ordered Banach space; fixed point
Summary:
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
References:
[1] Carl, S., Heikkilä, S.: On discontinuous implicit and explicit abstract impulsive boundary value problems. Nonlinear Anal., Theory Methods Appl. 41 (2000), 701-723. DOI 10.1016/S0362-546X(98)00305-8 | MR 1780640
[2] Federson, M., Bianconi, M.: Linear Fredholm integral equations and the integral of Kurzweil. J. Appl. Anal. 8 (2002), 83-110. DOI 10.1515/JAA.2002.83 | MR 1921473 | Zbl 1043.45010
[3] Federson, M., Schwabik, Š.: Generalized ordinary differential equations approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19 (2006), 1201-1234. MR 2278005
[4] Federson, M., Táboas, P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal., Theory Methods Appl. 50 (2002), 389-407. DOI 10.1016/S0362-546X(01)00769-6 | MR 1906469 | Zbl 1011.34070
[5] Guo, D., Cho, Y. J., Zhu, J.: Partial Ordering Methods in Nonlinear Problems. Nova Science Publishers, Inc. New York (2004). MR 2084490 | Zbl 1116.45007
[6] Heikkilä, S., Kumpulainen, S., Kumpulainen, M.: On improper integrals and differential equations in ordered Banach spaces. J. Math. Anal. Appl. 319 (2006), 579-603. DOI 10.1016/j.jmaa.2005.06.051 | MR 2227925 | Zbl 1105.34037
[7] Heikkilä, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker, Inc. New York (1994). MR 1280028 | Zbl 0804.34001
[8] Heikkilä, S., Seikkala, S.: On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces. Electron. J. Differ. Equ., paper No. 103 (2008), 1-11. MR 2430900 | Zbl 1168.45011
[9] Heikkilä, S., Ye, G.: Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions. Southeast Asian Bull. Math. 35 (2011), 407-418. MR 2856387 | Zbl 1240.26025
[10] Lu, J., Lee, P.-Y.: On singularity of Henstock integrable functions. Real Anal. Exch. 25 (2000), 795-797. DOI 10.2307/44154035 | MR 1778532 | Zbl 1015.26016
[11] Satco, B.-R.: Nonlinear Volterra integral equations in Henstock integrability setting. Electron. J. Differ. Equ., paper No. 39 (2008), 1-9. MR 2392943 | Zbl 1169.45300
[12] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. World Scientific Hackensack (2005). MR 2167754 | Zbl 1088.28008
[13] Sikorska-Nowak, A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals. Ann. Pol. Math. 83 (2004), 257-267. DOI 10.4064/ap83-3-7 | MR 2111712 | Zbl 1101.45006
[14] Sikorska-Nowak, A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral on Banach spaces. J. Appl. Math., Article ID31572 (2007), 1-12. DOI 10.1155/2007/31572 | MR 2317885
[15] Sikorska-Nowak, A.: Existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 227-238. MR 2377959
[16] Sikorska-Nowak, A.: Nonlinear integrodifferential equations of mixed type in Banach spaces. Int. J. Math. Math. Sci., Article ID65947 (2007), 1-14. DOI 10.1155/2007/65947 | MR 2336140 | Zbl 1147.45009
[17] Sikorska-Nowak, A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals. Dyn. Syst. Appl. 17 (2008), 97-107. MR 2433893 | Zbl 1154.45011
Partner of
EuDML logo