Previous |  Up |  Next

Article

Keywords:
nonconforming finite elements; dual-weighted residual method; a posteriori error estimate; Poisson equation; finite element method; Helmholtz decomposition
Summary:
This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete $H^1$-seminorm are derived.
References:
[1] Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42 (2005), 2320-2341. DOI 10.1137/S0036142903425112 | MR 2139395 | Zbl 1085.65102
[2] Ainsworth, M.: A posteriori error estimation for non-conforming quadrilateral finite elements. Int. J. Numer. Anal. Model. 2 (2005), 1-18. MR 2112654 | Zbl 1071.65141
[3] Ainsworth, M., Rankin, R.: Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements. SIAM J. Numer. Anal. 46 (2008), 3207-3232. DOI 10.1137/07070838X | MR 2448662 | Zbl 1180.65141
[4] Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems. Numer. Math. 119 (2011), 219-243. DOI 10.1007/s00211-011-0384-1 | MR 2836086 | Zbl 1229.65194
[5] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001), 1-102. DOI 10.1017/S0962492901000010 | MR 2009692 | Zbl 1105.65349
[6] Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45 (2007), 68-82. DOI 10.1137/050628854 | MR 2285845 | Zbl 1165.65072
[7] Carstensen, C., Hu, J.: A unifying theory of a posteriori error control of nonconforming finite element methods. Numer. Math. 107 (2007), 473-502. DOI 10.1007/s00211-007-0068-z | MR 2336116
[8] Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. DOI 10.1051/m2an/1996300403851 | MR 1399496 | Zbl 0853.65110
[9] Jr., J. Douglas, Santos, J. E., Sheen, D., Ye, X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. M2AN, Math. Model. Numer. Anal. 33 (1999), 747-770. DOI 10.1051/m2an:1999161 | MR 1726483 | Zbl 0941.65115
[10] Grajewski, M., Hron, J., Turek, S.: Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals. Appl. Numer. Math. 54 (2005), 504-518. DOI 10.1016/j.apnum.2004.09.016 | MR 2149366 | Zbl 1074.65123
[11] Han, H.-D.: A finite element approximation of Navier-Stokes equations using nonconforming elements. J. Comput. Math. 2 (1984), 77-88. Zbl 0598.76029
[12] Kanschat, G., Suttmeier, F.-T.: A posteriori error estimates for nonconforming finite element schemes. Calcolo 36 (1999), 129-141. DOI 10.1007/s100920050027 | MR 1742308 | Zbl 0936.65128
[13] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations 8 (1992), 97-111. DOI 10.1002/num.1690080202 | MR 1148797 | Zbl 0742.76051
[14] Schieweck, F.: A posteriori error estimates with post-processing for nonconforming finite elements. M2AN, Math. Model. Numer. Anal. 36 (2002), 489-503. DOI 10.1051/m2an:2002022 | MR 1918941 | Zbl 1041.65083
Partner of
EuDML logo