Previous |  Up |  Next

Article

Title: New results concerning the DWR method for some nonconforming FEM (English)
Author: Vanselow, Reiner
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 551-568
Summary lang: English
.
Category: math
.
Summary: This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete $H^1$-seminorm are derived. (English)
Keyword: nonconforming finite elements
Keyword: dual-weighted residual method
Keyword: a posteriori error estimate
Keyword: Poisson equation
Keyword: finite element method
Keyword: Helmholtz decomposition
MSC: 35J05
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1274.65293
idMR: MR3010236
DOI: 10.1007/s10492-012-0033-8
.
Date available: 2012-11-10T20:35:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143001
.
Reference: [1] Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation.SIAM J. Numer. Anal. 42 (2005), 2320-2341. Zbl 1085.65102, MR 2139395, 10.1137/S0036142903425112
Reference: [2] Ainsworth, M.: A posteriori error estimation for non-conforming quadrilateral finite elements.Int. J. Numer. Anal. Model. 2 (2005), 1-18. Zbl 1071.65141, MR 2112654
Reference: [3] Ainsworth, M., Rankin, R.: Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements.SIAM J. Numer. Anal. 46 (2008), 3207-3232. Zbl 1180.65141, MR 2448662, 10.1137/07070838X
Reference: [4] Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems.Numer. Math. 119 (2011), 219-243. Zbl 1229.65194, MR 2836086, 10.1007/s00211-011-0384-1
Reference: [5] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods.Acta Numerica 10 (2001), 1-102. Zbl 1105.65349, MR 2009692, 10.1017/S0962492901000010
Reference: [6] Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements.SIAM J. Numer. Anal. 45 (2007), 68-82. Zbl 1165.65072, MR 2285845, 10.1137/050628854
Reference: [7] Carstensen, C., Hu, J.: A unifying theory of a posteriori error control of nonconforming finite element methods.Numer. Math. 107 (2007), 473-502. MR 2336116, 10.1007/s00211-007-0068-z
Reference: [8] Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods.RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. Zbl 0853.65110, MR 1399496, 10.1051/m2an/1996300403851
Reference: [9] Jr., J. Douglas, Santos, J. E., Sheen, D., Ye, X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems.M2AN, Math. Model. Numer. Anal. 33 (1999), 747-770. Zbl 0941.65115, MR 1726483, 10.1051/m2an:1999161
Reference: [10] Grajewski, M., Hron, J., Turek, S.: Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals.Appl. Numer. Math. 54 (2005), 504-518. Zbl 1074.65123, MR 2149366, 10.1016/j.apnum.2004.09.016
Reference: [11] Han, H.-D.: A finite element approximation of Navier-Stokes equations using nonconforming elements.J. Comput. Math. 2 (1984), 77-88. Zbl 0598.76029
Reference: [12] Kanschat, G., Suttmeier, F.-T.: A posteriori error estimates for nonconforming finite element schemes.Calcolo 36 (1999), 129-141. Zbl 0936.65128, MR 1742308, 10.1007/s100920050027
Reference: [13] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97-111. Zbl 0742.76051, MR 1148797, 10.1002/num.1690080202
Reference: [14] Schieweck, F.: A posteriori error estimates with post-processing for nonconforming finite elements.M2AN, Math. Model. Numer. Anal. 36 (2002), 489-503. Zbl 1041.65083, MR 1918941, 10.1051/m2an:2002022
.

Files

Files Size Format View
AplMat_57-2012-6_1.pdf 299.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo