Article
Keywords:
loop; associator; commutator; nilpotent; quasivarieties; quasiidentities; identities
Summary:
In this part the smallest non-abelian quasivarieties for nilpotent Moufang loops are described.
References:
[1] Mal'cev A.I.:
On the inclusion of associative systems in groups, I. Mat. Sbornik 6 (1939), no. 2, 331–336.
MR 0002152
[2] Mal'cev A.I.:
On the inclusion of associative systems in groups, II. Mat. Sbornik 8 (1940), no. 2, 251–263.
MR 0003420
[3] Mal'cev A.I.:
Quasiprimitive classes of abstract algebras. Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 187–189.
MR 0079572
[4] Mal'cev A.I.:
Several remarks on quasivarieties of algebraic systems. Algebra i Logika Sem. 5 (1966), no. 3, 3–9.
MR 0205902
[5] Mal'cev A. I.:
Some borderline problems of algebra and logic. 1968 Proc. Internat. Congr. Math. (Moscow, 1966), pp. 217–231.
MR 0233751
[7] Ursu V.I.:
On identities of nilpotent Moufang loops. Rev. Roumaine Math. Pures Appl. 45 (2000), no. 3, 537–548.
MR 1840173 |
Zbl 0993.20043
[9] Koval'ski A.V., Ursu V.I.:
An equational theory for a nilpotent A-loop. Algebra Logika 49 (2010), no. 4, 479–497.
MR 2790173