Previous |  Up |  Next

Article

Keywords:
differential modes; abelian algebras; quasi-affine algebras; subreducts of modules
Summary:
We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.
References:
[1] Gumm H.P.: Algebras in permutable varieties: geometrical properties of affine algebras. Algebra Universalis 9 (1979), no. 1, 8–34. DOI 10.1007/BF02488013 | MR 0508666 | Zbl 0414.08002
[2] Kearnes K.: The structure of finite modes. manuscript, 1990's.
[3] Kearnes K.: Subdirectly irreducible modes. Discuss. Math. Algebra Stochastic Methods 19 (1999), no. 1, 129–145. MR 1709965 | Zbl 0948.08001
[4] Kearnes K., Szendrei Á.: The relationship between two commutators. Internat. J. Algebra Comput. 8 (1998), no. 4, 497–531. DOI 10.1142/S0218196798000247 | MR 1663558 | Zbl 0923.08001
[5] Kravchenko A., Pilitowska A., Romanowska A., Stanovský D.: Differential modes. Internat. J. Algebra Comput. 18 (2008), no. 3, 567–588. DOI 10.1142/S0218196708004561 | MR 2422073 | Zbl 1144.08001
[6] Padmanabhan R., Penner P.: An implication basis for linear forms. Algebra Universalis 55 (2006), no. 2–3, 355–368. DOI 10.1007/s00012-006-1994-9 | MR 2280237 | Zbl 1108.08006
[7] Pilitowska A., Romanowska A., Stanovský D.: Varieties of differential modes embeddable into semimodules. Internat. J. Algebra Comput. 19 (2009), no. 5, 669–680. DOI 10.1142/S0218196709005305 | MR 2547063 | Zbl 1173.08002
[8] Quackenbush R.: Quasi-affine algebras. Algebra Universalis 20 (1985), 318–327. DOI 10.1007/BF01195141 | MR 0811692 | Zbl 0573.08003
[9] Romanowska A.: Semi-affine modes and modals. Sci. Math. Jpn. 61 (2005), 159–194. MR 2111551 | Zbl 1067.08001
[10] Romanowska A.B., Smith J.D.H.: Differential groupoids. Contributions to General Algebra 7 (1991), 283–290. MR 1143092 | Zbl 0744.20055
[11] Romanowska A., Smith J.D.H.: Modes. World Scientific, River Edge, NJ, 2002. MR 1932199 | Zbl 1060.08009
[12] Smith J.D.H.: Mal'cev varieties. Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. MR 0432511 | Zbl 0344.08002
[13] Stanovský D.: Idempotent subreducts of semimodules over commutative semirings. Rend. Semin. Mat. Univ. Padova 121 (2009), 33–43. DOI 10.4171/RSMUP/121-3 | MR 2542133 | Zbl 1190.16054
[14] Stanovský D.: Subdirectly irreducible differential modes. Internat. J. Algebra Comput.(to appear).
[15] Stronkowski M.: Embedding entropic algebras into semimodules and modules. Internat. J. Algebra Comput. 19 (2009), no. 8, 1025–1047. DOI 10.1142/S0218196709005470 | MR 2603717 | Zbl 1193.08001
[16] Stronkowski M., Stanovský D.: Embedding general algebras into modules. Proc. Amer. Math. Soc. 138 (2010), no. 8, 2687–2699. DOI 10.1090/S0002-9939-10-10356-6 | MR 2644885 | Zbl 1206.08002
[17] Szendrei Á.: Modules in general algebra. Contributions to General Algebra 10 (1998), 41–53. MR 1648809 | Zbl 0912.08001
Partner of
EuDML logo