Previous |  Up |  Next

Article

Keywords:
basis; loop; associator; commutator; nilpotent; variety; quasivariety
Summary:
In this part of the paper we study the quasiidentities of the nilpotent Moufang loops. In particular, we solve the problem of finite basis for quasiidentities in the finitely generated nilpotent Moufang loop.
References:
[1] Ol'shanskii A.Yu.: Conditional identities in finite groups. Sibirsk. Mat. Zh. 15 (1974), no. 6, 1409–1413. MR 0367068 | Zbl 0307.20017
[2] Budkin A.I.: Quasiidentities of nilpotent groups and groups with one relation. Algebra i Logika 18 (1979), no. 2, 127–136. DOI 10.1007/BF01669499 | MR 0566777
[3] Ursu V.I.: On quasiidentities of finitely generated commutative Moufang loops. Algebra i Logika 30, (1991), no. 6, 726–734. MR 1213732
[4] Bruck R.H.: A Survey of Binary Systems. Springer, Berlin-Heidelberg-New York, 1958. MR 0093552 | Zbl 0141.01401
[5] Kargapolov M.I., Merzlyakov Yu.I.: Fundamentals of Group Theory. Moscow, Nauka, 1982. MR 0677282 | Zbl 0884.20001
[6] Dlab V., Kořínek V.: The Frattini subgroup of a direct product of groups. Czechoslovak Math. J. 10 (1960), 50–358. MR 0114858 | Zbl 0101.26303
[7] Mal'cev A.I.: Algebraic Systems. Moscow, Nauka, 1970. MR 0282908 | Zbl 0223.08001
[8] Vinogradov A.A.: Quasivarieties of Abelian groups. Algebra i Logika Sem. 4 (1965), no. 6, 15–18. MR 0199262
[9] Ursu V.I.: On identities of nilpotent Moufang loops. Rev. Roumaine Math. Pures Appl. 45 (2000), no. 3, 537–548. MR 1840173 | Zbl 0993.20043
Partner of
EuDML logo