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Abelian di�erential modes are quasi-aÆneDavid Stanovsk�yAbstra
t. We study a 
lass of strongly solvable modes, 
alled di�erential modes.We 
hara
terize abelian algebras in this 
lass and prove that all of them arequasi-aÆne, i.e., they are subredu
ts of modules over 
ommutative rings.Keywords: di�erential modes, abelian algebras, quasi-aÆne algebras, subredu
tsof modulesClassi�
ation: 08A05, 15A781. Introdu
tionModes are idempotent algebras where every pair of operations 
ommutes, or, inother terms, idempotent algebras where all operations are homomorphisms fromthe respe
tive dire
t power (see Se
tion 3 for a formal de�nition). One of themajor open problems in the theory of modes is, to �nd an abstra
t 
hara
teriza-tion of modes that are subredu
ts of a module over a 
ommutative ring (see themonograph [11℄ or the survey paper [9℄). The problem has been addressed in sev-eral papers, the 
omplete list of referen
es 
an be found in a re
ent 
ontribution[15℄, and many results are summarized in [11℄. Abelianess is an obvious ne
essary
ondition and it seems plausible to 
onje
ture that it is also suÆ
ient. We 
on-�rm the 
onje
ture for di�erential modes. (We 
onsider abelian algebras in theabstra
t sense of universal algebra; they are 
alled diagonally normal in [11℄).Our result also has some appeal to the \abelian implies quasi-aÆne" problem[17℄. A mode is quasi-aÆne if and only if it is a subredu
t of a module over a
ommutative ring (see Se
tion 2 for explanation). All quasi-aÆne algebras areabelian, but not the other way around. One of the major proje
ts in universalalgebra is to determine abstra
t 
onditions that make abelian algebras quasi-aÆne. There was a signi�
ant progress over the years, from the initial resultsof H.P. Gumm [1℄ and J.D.H. Smith [12℄ proving the impli
ation for 
ongruen
epermutable varieties, to the strongest result so far, for varieties satisfying a non-trivial idempotent Mal'tsev 
ondition [4℄ by K. Kearnes and �A. Szendrei. The fullstory is 
overed by the survey paper [17℄, or in a shorter way by the introdu
torynotes of the most re
ent 
ontribution [16℄.The present paper settles the impli
ation for the 
lass of di�erential modes [5℄,
onsisting of modes with a single n-ary operation that possess a 
ongruen
e su
hThe work was partly supported by the grant GA�CR 201/08/P056.



462 D. Stanovsk�ythat all its blo
ks and the fa
tor are left proje
tion algebras (instead of left, we
ould have 
hosen any position to be the distinguished one). The main idea of theproof is, to synta
ti
ally verify the axioms of quasi-aÆne algebras re
ently foundby M. Stronkowski and the author in [16℄.Despite the fa
t the 
lass we study is rather small, I �nd the result interestingfor two reasons. First, all previous theorems on embedding modes into modulesassumed some sort of 
an
ellativity. But there are no 
an
ellative di�erentialmodes (we 
an only have 
an
ellativity in one 
oordinate). Se
ond, the resultsof K. Kearnes [2℄, [3℄ indi
ate that modes 
ome in three substantially di�erentfamilies. For �nite modes, the families are: strongly solvable modes, aÆne modesand semilatti
e modes. AÆne modes are trivially quasi-aÆne, and non-trivialsemilatti
e modes are never abelian, so the interesting 
ase is the strongly solvableone. It is natural to start with di�erential modes: they posses a strongly solvable
hain of length 2. The 
lass was investigated in a re
ent of papers [5℄, [7℄, [14℄(and mu
h earlier in the binary 
ase, see [11℄), providing tools and insight for ourwork.The paper is organized as follows. In Se
tion 2, we re
all the folklore fa
t thatquasi-aÆne modes are subredu
ts of modules over 
ommutative rings. Se
tion 3
ontains an introdu
tion to Szendrei modes and the observation that abelianmodes are Szendrei modes. In the next se
tion, we introdu
e a framework forSzendrei di�erential modes, to be used in Se
tion 5 to 
hara
terize abelian di�er-ential modes, and in Se
tion 6 to prove our main result. The �nal se
tion 
ontainsremarks on di�erential modes that are redu
ts of modules.2. Quasi-aÆne modesAn algebra A is 
alled a redu
t of an algebra B, if they have the same universeand the operations of A 
an be expressed as term operations of B. Subredu
tmeans a subalgebra of a redu
t. Two similar types of representation appear inliterature:� Quasi-linear algebras are subredu
ts of modules; it means their operations
an be expressed as module termsr1x1 + � � �+ rnxn:� Quasi-aÆne algebras are subredu
ts of modules with additional 
onstantsfor every element of the universe; it means their operations 
an be ex-pressed as module polynomialsr1x1 + � � �+ rnxn + 
;with a 
onstant 
.It has been shown re
ently [16℄ that, for algebras without nullary operations, thetwo notions 
oin
ide. It means that every quasi-aÆne algebra with no 
onstantsadmits a quasi-linear representation. This is not an easy proof. However, it is



Abelian di�erential modes are quasi-aÆne 463very easy to prove it for idempotent algebras, and indeed this fa
t had been verywell known before.Proposition 2.1. Every quasi-aÆne algebra 
ontaining an idempotent elemente is a subredu
t of a module su
h that e = 0.Proof: Assume A = (A;FA) admits a quasi-aÆne representation in a moduleM over a ring R. It means, A �M and for every basi
 operation fA 2 FA,fA(a1; : : : ; an) = rf1a1 + � � �+ rfnan + 
ffor some rf1; : : : ; rfn 2 R and 
f 2M . Consider the set B = fa� e : a 2 Ag anda 
olle
tion FB of operationsfB(a1; : : : ; an) = rf1a1 + � � �+ rfnan:The mapping ' : A ! B, a 7! a � e, is bije
tive, maps e onto 0 and it is anisomorphism of (A;FA) ' (B;FB), sin
efB('(a1); : : : ; '(an)) = fB(a1 � e; : : : ; an � e)= rf1(a1 � e) + � � �+ rfn(an � e)= (rf1a1 + � � �+ rfnan + 
f )� (rf1e+ � � �+ rfne+ 
f )= fA(a1; : : : ; an)� fA(e; : : : ; e)= fA(a1; : : : ; an)� e = '(fA(a1; : : : ; an))for every operation f and every tuple a1; : : : ; an 2 A. �Another folklore result says that, for modes, we 
an always assume the ring is
ommutative.Proposition 2.2. Every quasi-aÆne mode is a subredu
t of a module over a
ommutative ring.Proof: A

ording to Proposition 2.1, we 
an assume that the mode A = (A;F )is a subredu
t of a module M over a ring R su
h that 0 2 A. Letf(a1; : : : ; an) = rf1a1 + � � �+ rfnanbe the linear representation of the basi
 operations. We 
an assume that themodule M is generated by the set A, that the ring R a
ts faithfully on M andthat R is generated by the set G = frf1; : : : ; rfn : f 2 Fg of all 
oeÆ
ientsthat appear in the linear representation. Let G� denote the set of all produ
ts ofelements from G. We start with a proof thatstu � a = tsu � afor every s; t 2 G, u 2 G� and every a 2 A. Assume s = rfi, t = rgj andu = u1 � � �up, where u1 = rh1k1 ; : : : ; up = rhpkp . The fa
t that an m-ary operation



464 D. Stanovsk�yf and an n-ary operation g 
ommute is expressed by the identityf(g(x11; : : : ; x1n); : : : ; g(xm1; : : : ; xmn))= g(f(x11; : : : ; xm1); : : : ; f(x1n; : : : ; xmn)):Repla
e xij with a term w1 
onstru
ted in the following way: wp+1 = y, andwq = hq(x; : : : ; x; wq+1; x; : : : ; x) for every q = p; : : : ; 1, where wq+1 sits at thekq-th 
oordinate. Now, evaluate y with a and all other variables with zero. Itresults in the desired identity.An easy indu
tion show that in fa
t stu � a = tsu � a for every s; t; u 2 G� andevery a 2 A. The next step is to prove thatstu � a = tsu � afor every s; t; u 2 R and every a 2 A. Sin
e every element of a ring is a sum ofprodu
ts of generators, we 
an write s = P si, t = P ti, u = Pui, where allsi; ti; ui 2 G�. Now, stu � a = (Pi;j;k sitjuk) � a = Pi;j;k(sitjuk � a), and we 
anuse the previous fa
t.Finally, we show that st �m = ts �mfor every s; t 2 R and every m 2 M . Write m = P ri � ai for ri 2 R and ai 2 A.Then st �m = st � (P ri � ai) =P(stri � ai), and we 
an use the previous fa
t.Consequently, sin
e R a
ts faithfully, we have st = ts for every s; t 2 R. �The approa
h from the proof 
an be used for an arbitrary idempotent variety.For subvarieties of modes, one obtains the 
on
ept of the aÆnization ring of avariety, studied thoroughly in [11℄.Example 2.3 ([10℄). Consider the variety of binary di�erential modes. It isde�ned (relatively to modes) by the identityx � (y � z) = x � y:Let A = (A; �) be a quasi-aÆne binary di�erential mode and a � b = (1� r)a+ rbits linear representation in a module M over a 
ommutative ring R. We 
anassume that 0 2 A, that M is generated by A, that R a
ts faithfully on M andthat R is generated by f1; rg. Hen
e, R is a quotient of the polynomial ring Z[x℄.The identity x � (y � z) = x � y translates into the equality(1� r)a+ r(1� r)b+ r2
 = (1� r)a + rbfor every a; b; 
 2 A. Setting a = b = 0, we obtain r2
 = 0 for every 
 2 A, hen
ealso for every 
 2M , and so r2 = 0. In this 
ase, the equality is always satis�ed.Consequently, for every quasi-aÆne binary di�erential mode, we 
an always takea module over the ring R = Z[x℄=(x2).



Abelian di�erential modes are quasi-aÆne 4653. Szendrei and abelian modesThe property that two operations f; g 
ommute 
an be expressed by the so
alled entropi
 law :f(g(x11; : : : ; x1n); : : : ; g(xm1; : : : ; xmn))=g(f(x11; : : : ; xm1); : : : ; f(x1n; : : : ; xmn)):If f = g, we 
an write it asf(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)) = f(f(x ~11; : : : ; x ~1n); : : : ; f(x ~n1; : : : ; x ~nn))where ~ij = ji for every i; j. However, subredu
ts of modules over 
ommutativerings satisfy a more restri
tive set of 
onditions:f(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)) = f(f(x �11; : : : ; x �1n); : : : ; f(x �n1; : : : ; x �nn))whenever � is an involution on indi
es that 
ips a single pair of indi
es ij; jiand leaves the other pairs still. The 
onditions will be 
alled Szendrei identities ,and modes satisfying Szendrei identities for every basi
 operation will be 
alledSzendrei modes . Note that binary modes are always Szendrei modes, be
ausethe binary Szendrei identity is a
tually the entropi
 law. The importan
e of this
on
ept is given by the following theorem [13℄, [15℄: A mode satis�es Szendreiidentities if and only if it is a subredu
t of a semimodule over a 
ommutativesemiring.An algebra A is 
alled abelian if the diagonal is a blo
k of a 
ongruen
e of thesquare A�A. Equivalently, if the quasi-identityt(x; u1; : : : ; uk) = t(x; v1; : : : ; vk)! t(y; u1; : : : ; uk) = t(y; v1; : : : ; vk)is satis�ed in A for every term t. Modules are obviously abelian, and so is everyquasi-aÆne algebra.The following observation is an obvious 
onsequen
e of the 
onje
ture thatabelian modes are quasi-aÆne, and supports my belief in the 
onje
ture.Proposition 3.1. Abelian modes are Szendrei modes.Proof: Let t = f(f(x11; : : : ; x1n); : : : ; f(xn1; : : : ; xnn)). Thent(x11; : : : ; xnn) = t(x ~11; : : : ; x ~nn)is the entropi
 law for an n-ary operation f . Fix i < j and repla
e all variables,ex
ept xij and xji, by x. We obtaint(x; : : : ; x; xij ; x; : : : ; x; xji; x; : : : ; x) = t(x; : : : ; x; xji; x; : : : ; x; xij ; x; : : : ; x):Using (n2 � 2)-times abelianess, we 
an repla
e the �rst o

urren
e of x by x11,the se
ond o

urren
e by x12, and so on. The result is a Szendrei identity that
ips ij $ ji. �



466 D. Stanovsk�y(A more general result 
an be found in [6℄: abelian entropi
 algebras with asingle n-ary operation satisfy all equations true in every algebra (R; f), where fis an n-ary linear form.)Remark 3.2. Neither abelian modes, nor quasi-aÆne modes, form a variety. Hereis an example from [9℄. The mode (Z4; Æ), where a Æ b = �a + 2b, is a redu
t ofthe Z-moduleZ4, but its fa
tor over the 
ongruen
e 0j13j2 is not abelian, be
ause[1℄ Æ [1℄ = [1℄ Æ [2℄, but [0℄ Æ [1℄ 6= [0℄ Æ [2℄.4. Szendrei di�erential modesWe des
ribe a framework for Szendrei di�erential modes, useful for our argu-ments in the next two se
tions. It is similar to the one developed in [7℄, but we usea di�erent notation. To avoid any 
onfusion, we start from the very beginning.We re
all from [5℄ that (left, n-ary) di�erential modes are axiomatized by thefollowing identities: f(x; x; : : : ; x) = x(I) f(f(x; y2; : : : ; yn); z2; : : : ; zn) = f(f(x; z2; : : : ; zn); y2; : : : ; yn)(E) f(x; f(y21; : : : ; y2n); : : : ; f(yn1; : : : ; ynn)) = f(x; y21; : : : ; yn1)(R)Using (R), every term is equivalent to a term in the redu
ed formf(: : : (f(f(x; y12; : : : ; y1n); y22; : : : ; y2n) : : : ); ym2; : : : ; ymn):It is easy to 
he
k (or �nd in [7℄) that the Szendrei identities are equivalent, indi�erential modes, to a single identityf(x; y2; : : : ; yn) = f(: : : (f(f(x; y2; x; : : : ; x); x; y3; x; : : : ; x) : : : ); x; : : : ; x; yn):We see that the a
tion of every argument y2; : : : ; yn is in a sense independent of thea
tion of the other ones, so instead of an algebra with a single n-ary operation,it is more 
onvenient to 
onsider a term equivalent algebra with n � 1 binaryoperations, de�ned by x �i y = f(x; : : : ; x| {z }i�1 ; y; x; : : : ; x| {z }n�i ):Using (R), the operation f 
an be re
overed byf(x; y2; : : : ; yn) = (: : : ((x �2 y2) �3 y3) : : : ) �n yn:We just proved the following statement.Proposition 4.1. Let (A; f) be a Szendrei di�erential mode. Then it is termequivalent to the algebra (A; �2; : : : ; �n).



Abelian di�erential modes are quasi-aÆne 467It is easy to 
he
k that the original set of identities (I) (E) (R) is equivalent tothe following set, to be denoted in the same way.x �i x = x for every i(I) (x �i y) �j z = (x �j z) �i y for every i; j(E) x �i (y �j z) = x �i y for every i; j(R)It follows that every term is equivalent to a term in the redu
ed form(((x �i1 y1) �i2 y2) : : :) �im ym;(y)for somem, some i1; : : : ; im 2 f2; : : : ; ng and some 
hoi
e of variables x; y1; : : : ; ym.Using (I) and (E), we 
an �nd an equivalent term where x o

urs only at the left-most pla
e; su
h expression is unique up to a permutation of the right a
tions(the proof is easy and 
an be found in [5℄).We shall use the following short notation for terms in the redu
ed form. LetW (A) be the set of words over the alphabet f2; : : : ; ng�A. The term (y) will bedenoted shortly x �w, where �w = (i1; y1)(i2; y2) : : : (im; ym) is a word from W (A).We will always use overlined letters for words. Con
atenation of words will bedenoted by juxtaposition, so x�u�v means the term x �w, where �w = �u�v. A

ordingto (E), x�u�v = x�v�ufor every �u; �v 2 W (A), hen
e we are going to 
ommute subwords freely withoutany expli
it noti
e. A

ording to (R),(x�u) �i (y�v) = x�u(i; y):We shall need the following two te
hni
al notions. We say that two words�u = (i1; y1) : : : (ik; yk), �v = (j1; z1) : : : (jl; zl) are similar , and write �u � �v, ifk = l and there is a permutation � of the indi
es su
h that im = j�(m) for everym = 1; : : : ; k. We say that they are equivalent , and write �u � �v, if there is apermutation � su
h that im = j�(m) and ym = z�(m) for every m = 1; : : : ; k, itmeans if the two words are equal up to a permutation of letters.5. Abelian di�erential modesProposition 5.1. A Szendrei di�erential mode A is abelian if and only if thefollowing two 
onditions are satis�ed:(A1) every operation �i is right 
an
ellative;(A2) for every a; b 2 A and words �
; �d 2 W (A) with �
 � �d, if a�
 = a �d, thenb�
 = b �d.Proof: ()) (A1) Let � = �i and assume a � 
 = b � 
. Using abelianess, a � b =b � b = b. Consequently, b = a � b = a � (a � b) = a � a = a, using (R) in thethird step. (A2) is a spe
ial 
ase of abelianess for t(x; y1; : : : ; ym) = x �w, where�w = (i1; y1) : : : (im; ym) su
h that �w � �
 � �d.



468 D. Stanovsk�y(() Let t be a term, we 
an assume it is in the redu
ed form t(x1; : : : ; xm) =xk �w for a word �w 2W (fx1; : : : ; xmg). Using (E) and (I), we 
an also assume thatxk does not appear in �w. We want to prove that t(a; 
2; : : : ; 
m) = t(a; d2; : : : ; dm)implies t(b; 
2; : : : ; 
m) = t(b; d2; : : : ; dm), for every a; b; 
i; di 2 A.For k = 1, this is exa
tly 
ondition (A2). For k 6= 1, using (E), we 
an furtherassume that �w = �u�v su
h that �u does not 
ontain the variable x1 and �v 2W (fx1g).Now, if t(a; 
2; : : : ; 
m) = t(a; d2; : : : ; dm), 
an
el from the right using (A1), andobtain s(
2; : : : ; 
m) = s(d2; : : : ; dm), where s = xk�u. Then, multiply ba
k fromthe right, and obtain t(b; 
2; : : : ; 
m) = t(b; d2; : : : ; dm). �Conditions (A1) and (A2) are independent for general di�erential modes, but(A2) implies (A1) for the �nite ones. To show independen
e, we present twobinary examples. (Binary modes are always Szendrei modes.)Example 5.2. The following table shows a non-abelian binary di�erential modesatisfying (A1) and failing (A2): 2 � 2 = 2 � 1, but 0 � 2 6= 0 � 1.0 1 20 0 0 11 1 1 02 2 2 2In the terminology of [14℄, this is the smallest 
o
y
li
 subdire
tly irredu
iblebinary di�erential mode and, in fa
t, all 
o
y
li
 SI's satisfy (A1) and fail (A2).Example 5.3. The following 
onstru
tion shows a non-abelian binary di�erentialmode satisfying (A2) and failing (A1). Let X = N [ fÆ; �g and let f(x) = x + 1for x 2 N and f(Æ) = f(�) = 1. Put A = X�f0; 1g and de�ne a binary operationby (x; a) � (y; a) = (x; a) for both a = 0; 1, and by (x; a) � (y; b) = (f(x); a) fora 6= b. The operation is obviously not right 
an
ellative, but we omit a ratherte
hni
al proof that this is a di�erential mode satisfying (A2).There is no su
h �nite example, as asserted by the following proposition. Analgebra is 
alled lo
ally �nite, if every �nitely generated subalgebra is �nite.Proposition 5.4. A lo
ally �nite Szendrei di�erential mode is abelian if and onlyif 
ondition (A2) holds.Proof: Let A be a lo
ally �nite Szendrei di�erential mode satisfying (A2). Weprove that every operation �i is right 
an
ellative. Let � be a 
ongruen
e of Asu
h that all blo
ks of � and the fa
tor A=� are left proje
tion algebras (see [5℄).Let Ra denote the right translation by a, it means Ra(x) = x �i a. Sin
e A=� isa left proje
tion algebra, we have Ra(x) � x for every a; x.Now, �x a 2 A and a � blo
k B, and 
onsider the subalgebra ha; bi, generatedby a and any element of B. Sin
e A is lo
ally �nite, the subalgebra ha; bi is �nite,so there is k and x 2 ha; bi \ B su
h that Rka(x) = x. Write it as Rka(x) = Rkx(x)and use (A2) to obtain that Rka(y) = Rkx(y) = y for every y 2 B, the latterequality following from the fa
t that the blo
ks of � are left proje
tion algebras.



Abelian di�erential modes are quasi-aÆne 469Consequently, the restri
tion of every right translation Ra on every blo
k of � is abije
tion. But A=� is a left proje
tion algebra, hen
e Ra is a bije
tion on A. �Our �nal example shows that there indeed are (�nite) abelian di�erentialmodes.Example 5.5 ([11℄). Let (Zk2; �) with a � b = (1 � k)a + kb. This is a binarydi�erential mode, it is a redu
t of a module, hen
e abelian. All right translationsare permutations of order k: we have Rna(x) = (1�nk)x+nka, and so Rna (x) = xi� nk = 0.Remark 5.6. Neither abelian di�erential modes, nor quasi-aÆne di�erentialmodes, form a variety. Example 5.2 is a fa
tor of (Z4; �) over the 
ongruen
e0j1j23.6. Quasi-aÆne representation of di�erential modesThroughout the se
tion, we impli
itly use Proposition 4.1 and 
onsider Szendreidi�erential modes as algebras (A; �2; : : : ; �n). In parti
ular, all terms are in thelanguage of �2; : : : ; �n. The notions of being abelian, or quasi-aÆne, are invariantwith respe
t to term equivalen
e.Theorem 6.1. A di�erential mode is abelian if and only if it is quasi-aÆne.Our proof is based on a synta
ti
 veri�
ation of an axiomatization of quasi-aÆne algebras, found by M. Stronkowski and the author in [16℄. First, we needto explain the axiomatization. A multiset is a generalization of a set in whi
hmembers are allowed to appear more than on
e.If T is a multiset of terms, let B(T ) denote the multiset of bran
hes of termsfrom T . A bran
h of a term is de�ned for every o

urren
e of a variable, as thevariable together with its address. Formally, if t = x, a variable, the only bran
hof t is x; and if t = f(s1; : : : ; sn) for a basi
 operation f , then b is a bran
h of tif and only if b = (f; i)b0, where b0 is a bran
h of si. (See [16℄ for an alternativedes
ription using free semimodules.)Theorem 6.2 ([16℄). An algebra is quasi-aÆne if and only if it satis�es all quasi-identities t1 = s1 & : : : & tn = sn ! t0 = s0su
h that B(ft0; t1; : : : ; tng) = B(fs0; s1; : : : ; sng).In Szendrei di�erential modes, it is 
onvenient to assume terms are in theredu
ed form. The lemma states what equality of bran
h multisets means.Lemma 6.3. Let t0; : : : ; tn, s0; : : : ; sn be terms su
h thatB(ft0; : : : ; tng) = B(fs0; : : : ; sng):Then there exist equivalent redu
ed forms x0�u0; : : : ; xn�un, y0�v0; : : : ; yn�vn su
hthat the following two 
onditions are satis�ed:



470 D. Stanovsk�y(B1) �u0�u1 : : : �un � �v0�v1 : : : �vn;(B2) there is a permutation � of the indi
es su
h that xi = y�(i) and ui � v�(i).Proof: Consider the identityx �i0 ((((y �i1 z1) �i2 z2) : : : ) �in zn) = x �i0 y:(R+)It is an obvious 
onsequen
e of (R), for every 
hoi
e of i0; : : : ; in. An o

urren
eof a variable in a term will be 
alled good , if its address 
ontains at most oneright turn, i.e., at most one letter of the form (�i; 2). An appli
ation of theidentity (R+) only removes bad o

urren
es of variables, and good o

urren
esremain good. The other way around, every bad o

urren
e 
an be removed by anappli
ation of (R+).For a multiset T of terms, we de�ne multisets B1(T ); B2(T ) in the followingway. For every t 2 T and every good o

urren
e of a variable x in t with pre
iselyone right turn (�i; 2), we put one 
opy of the letter (i; x) into B1(T ). For everyt 2 T and every good o

urren
e of a variable x in t with no right turns, we putone 
opy of the 
orresponding bran
h into B2(T ). Both multisets B1(T ); B2(T )are invariant with respe
t to an appli
ation of (R+) to any of the terms in T .Now, start with two multisets of terms T = ft0; : : : ; tng, S = fs0; : : : ; sngsu
h that B(T ) = B(S). Hen
e also B1(T ) = B1(S) and B2(T ) = B2(S). Us-ing (R+) suÆ
iently many times, we obtain multisets T 0 = ft00 : : : ; t0ng, S0 =fs00; : : : ; s0ng 
ontaining equivalent redu
ed forms. A

ording to the previous para-graph, Bi(T 0) = Bi(T ) = Bi(S) = Bi(S0) for both i = 1; 2. Condition (Bi)obviously follows from equality of the multisets Bi. �Corollary 6.4. A Szendrei di�erential mode is quasi-aÆne if it satis�es all quasi-identities t1 = s1 & : : : & tn = sn ! t0 = s0su
h that the terms are in the redu
ed form and satisfy 
onditions (B1) and (B2)of Lemma 6.3.Proof of Theorem 6.1: Every abelian mode is a Szendrei mode (Proposition3.1), so we need to verify that abelianess, i.e. 
onditions (A1), (A2) of Pro-position 5.1, implies every quasi-identity des
ribed in Corollary 6.4. Assumet1 = s1; : : : ; tn = sn holds, we prove t0 = s0. We will use the assumptions andnotation introdu
ed in Lemma 6.3 and start with an analysis of the permutation� from (B2).Claim. Let C be a 
y
le of length k in the permutation � su
h that 0 =2 C. Let
 2 C, and �w1 � �w2 be two similar words. Denote �u = �u
�u�(
) : : : �u�k�1(
) and�v = �v
�v�(
) : : : �v�k�1(
). If a�u �w1 = a�v �w2 for every a, then a �w1 = a �w2 for every a.



Abelian di�erential modes are quasi-aÆne 471Proof: Starting with the premise for a = x�k�1(
), we obtainx�k�1(
)�u �w1 = x�k�1(
)�v �w2= x�k�1(
)�v
�v�(
) : : : �v�k�1(
) �w2= y
�v
�v�(
) : : : �v�k�1(
) �w2= x
�u
�v�(
) : : : �v�k�1(
) �w2;using (B2) and t
 = s
 in the last two steps. Repeating the pro
edure performedon the last two lines k times, we obtainx�k�1(
)�u �w1 = x
�u
�v�(
)�v�2(
) : : : �v�k�1(
) �w2= y�(
)�u
�v�(
)�v�2(
) : : : �v�k�1(
) �w2= x�(
)�u
�u�(
)�v�2(
) : : : �v�k�1(
) �w2= : : := x�k�1(
)�u
�u�(
)�u�2(
) : : : �u�k�1(
) �w2= x�k�1(
)�u �w2:Now, use 
an
ellation (A1) and obtainx�k�1(
) �w1 = x�k�1(
) �w2:Finally, use (A2) with the assumption that �w1 � �w2 and obtaina �w1 = a �w2for every a. �Let � = C0C1 : : : Cl be the 
y
le de
omposition of � su
h that 0 is 
ontainedin C0. A

ording to (B1), we havea�u0�u1 : : : �un = a�v0�v1 : : : �vnfor every a. By (B2), ui � v�(i), so we 
an apply the 
laim on the previousidentity l-times, for every 
y
le C1; : : : ; Cl. The result is that, for every a,a�u0�u�(0) : : : �u�k�1(0) = a�v0�v�(0) : : : �v�k�1(0);where k is the length of C0. Now, start with a = x0 and do exa
tly k � 1 stepsas in the proof of the 
laim. The result isx0�u0�u�(0) : : : �u�k�1(0) = x�k�1(0)�v0�u�(0) : : : �u�k�1(0):By 
an
ellation (A1), x0�u0 = x�k�1(0)�v0 = y0�v0:Hen
e t0 = s0, as desired. �



472 D. Stanovsk�yLet me note that in an earlier version of this paper, I had a proof of Theo-rem 6.1 based on the Qua
kenbush's axiomatization of quasi-aÆne algebras [8℄.In [16℄, we 
laim that our axiomatization is larger but mu
h easier to handle (andprovide some eviden
e by �nding easy proofs of some older results). Based on myexperien
e from proving Theorem 6.1, I have to 
on�rm our bold statement.7. Redu
ts of modulesOur main result answers the question when a di�erential mode is a subredu
t ofa module. When does it admit a stronger representation, as a redu
t of a module?The �nal se
tion 
ontains several observations and remarks with respe
t to thisquestion.Similarly as in Example 2.3, every quasi-aÆne n-ary di�erential mode 
an berepresented over the ring Rn = Z[x2; : : : ; xn℄=(x22; : : : ; x2n) witha �i b = (1� xi)a+ xib:Sin
e (1�xi)(1+xi) = 1�x2i = 1, the element 1�xi is invertible. Consequently,if A is a redu
t of a module over the ring Rn, every operation �i forms a rightquasigroup (it means, all right translations are permutations). This is a stronger
ondition than (A1), but not suÆ
iently strong for a di�erential mode to be aredu
t of a module.Example 7.1. Let R = Z3[x℄=(x2), let a�b = (1�x)a+xb and put A = fux+v :u; v 2 Z3; v 6= �1g. Then A = (A; �) is a six-element subalgebra of (R; �), andit is a quasi-aÆne di�erential mode whi
h also is a right quasigroup. However,the only six-element abelian group is Z6 and it has only two binary redu
ts whi
hare right quasigroups: a Æ1 b = a and a Æ2 b = �a + 2b. None of the redu
ts isisomorphi
 to A.Is there a ni
e 
ondition 
hara
terizing redu
ts of modules within the varietyof di�erential modes?Our �nal remark says, forget about aÆne algebras. An algebra is 
alled aÆne,if it is polynomially equivalent to a module. In parti
ular, aÆne algebras have aMal'tsev polynomial. But every di�erential mode has a non-trivial fa
tor whi
his a left proje
tion subalgebra, so it 
annot have a Mal'tsev operation. A
tually,there is an independen
e result. (Similar and more general results for binarymodes are in Se
tion 8.5 of [11℄.)Proposition 7.2. The variety of di�erential modes is independent of any varietywith a Mal'tsev term.Proof: First, note that if t(x; : : : ) is a term where x is the leftmost variable,then the redu
t (A; t) of a di�erential mode A is a di�erential mode again: if� is the 
ongruen
e on A su
h that all blo
ks and the fa
tor are left proje
tionalgebras, it also is a 
ongruen
e on (A; t), with the same property.



Abelian di�erential modes are quasi-aÆne 473Let p(x; y; z) be a Mal'tsev term in a variety V . If z is the leftmost variable,
onsider the Mal'tsev term p(z; y; x) instead, hen
e, without loss of generality, we
an assume that x or y is the leftmost variable of p. Let t(x; y) = p(x; x; p(x; x; y)).Then, in di�erential modes, t(x; y) = p(x; x; x) = x using (R) and (I), howeverin V , we get t(x; y) = p(x; x; y) = y. Hen
e t proves independen
e of the twovarieties. �A
knowledgment. I wish to thank the referee for an unusually 
areful readingof the paper and pointing out several weak pla
es.Referen
es[1℄ Gumm H.P., Algebras in permutable varieties: geometri
al properties of aÆne algebras,Algebra Universalis 9 (1979), no. 1, 8{34.[2℄ Kearnes K., The stru
ture of �nite modes, manus
ript, 1990's.[3℄ Kearnes K., Subdire
tly irredu
ible modes, Dis
uss. Math. Algebra Sto
hasti
 Methods 19(1999), no. 1, 129{145.[4℄ Kearnes K., Szendrei �A., The relationship between two 
ommutators, Internat. J. AlgebraComput. 8 (1998), no. 4, 497{531.[5℄ Krav
henko A., Pilitowska A., Romanowska A., Stanovsk�y D., Di�erential modes, Internat.J. Algebra Comput. 18 (2008), no. 3, 567{588.[6℄ Padmanabhan R., Penner P., An impli
ation basis for linear forms, Algebra Universalis55 (2006), no. 2{3, 355{368.[7℄ Pilitowska A., Romanowska A., Stanovsk�y D., Varieties of di�erential modes embeddableinto semimodules, Internat. J. Algebra Comput. 19 (2009), no. 5, 669{680.[8℄ Qua
kenbush R., Quasi-aÆne algebras, Algebra Universalis 20 (1985), 318{327.[9℄ Romanowska A., Semi-aÆne modes and modals, S
i. Math. Jpn. 61 (2005), 159{194.[10℄ Romanowska A.B., Smith J.D.H., Di�erential groupoids, Contributions to General Algebra7 (1991), 283{290.[11℄ Romanowska A., Smith J.D.H., Modes, World S
ienti�
, River Edge, NJ, 2002.[12℄ Smith J.D.H.,Mal'
ev varieties, Le
ture Notes in Mathemati
s, 554, Springer, Berlin, 1976.[13℄ Stanovsk�y D., Idempotent subredu
ts of semimodules over 
ommutative semirings, Rend.Semin. Mat. Univ. Padova 121 (2009), 33{43.[14℄ Stanovsk�y D., Subdire
tly irredu
ible di�erential modes, Internat. J. Algebra Comput., toappear.[15℄ Stronkowski M., Embedding entropi
 algebras into semimodules and modules, Internat. J.Algebra Comput. 19 (2009), no. 8, 1025{1047.[16℄ Stronkowski M., Stanovsk�y D., Embedding general algebras into modules, Pro
. Amer.Math. So
. 138 (2010), no. 8, 2687{2699.[17℄ Szendrei �A.,Modules in general algebra, Contributions to General Algebra 10 (1998), 41{53.Charles University, Fa
ulty of Mathemati
s and Physi
s, Department ofAlgebra, Sokolovsk�a 83, 186 75 Prague 8, Cze
h Republi
E-mail: stanovsk�karlin.m�.
uni.
z(Re
eived February 1, 2012, revised April 21, 2012)


		webmaster@dml.cz
	2013-09-22T12:17:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




