Previous |  Up |  Next

Article

Keywords:
isoparametric triangular quadratic Lagrange finite element; invertible isoparametric mapping; initial or boundary value problems
Summary:
A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat K$ with unit legs $S_1$, $S_2$, a local space $\hat {\mathcal L}$ of quadratic polynomials on $\hat K$ and of parameters relating the values in the vertices and midpoints of sides of $\hat K$ to every function from $\hat {\mathcal L}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping ${\mathcal F}_h=(F_1,F_2)\in \hat {\mathcal L}\times \hat {\mathcal L}$. We explicitly describe such invertible isoparametric mappings ${\mathcal F}_h$ for which the images ${\mathcal F}_h(S_1)$, ${\mathcal F}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear.
References:
[1] Barrett, K. E.: Jacobians for isoparametric finite elements. Commun. Numer. Methods Eng. 12 (1996), 755-766. DOI 10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S | Zbl 0862.73057
[2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. SIAM Philadelphia (2002). MR 1930132
[3] Jordan, W. B.: A.E.C. Research and Development Report KAPL-M-7112. (1970).
[4] Knabner, P., Korotov, S., Summ, G.: Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite Elem. Anal. Des. 40 (2003), 159-172 \MR 2014327. DOI 10.1016/S0168-874X(02)00196-8 | MR 2014327
[5] Knabner, P., Summ, G.: The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements. Numer. Math. 88 (2001), 661-681. DOI 10.1007/PL00005454 | MR 1836875 | Zbl 0989.65133
[6] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462
[7] Lautersztajn-S, N., Samuelsson, A.: Distortion measures and inverse mapping for isoparametric 8 node plane finite elements with curved boundaries. Commun. Numer. Methods Eng. 14 (1998), 87-101. DOI 10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A | MR 1610166 | Zbl 0947.74064
[8] Meisters, G. H., Olech, C.: Locally one-to-one mappings and a classical theorem on schlicht functions. Duke Math. J. 30 (1963), 63-80. MR 0143921 | Zbl 0112.37702
[9] Mitchell, A. R., Wait, R.: The Finite Element Method in Partial Differential Equations. John Wiley & Sons London (1977). MR 0483547 | Zbl 0344.35001
[10] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Prentice Hall Englewood Cliffs (1973). MR 0443377 | Zbl 0356.65096
[11] Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H.: The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements. Comput. Mech. 14 (1994), 189-199. DOI 10.1007/BF00350284 | MR 1279009 | Zbl 0804.65103
Partner of
EuDML logo