[2] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. SIAM Philadelphia (2002).
MR 1930132
[3] Jordan, W. B.: A.E.C. Research and Development Report KAPL-M-7112. (1970).
[4] Knabner, P., Korotov, S., Summ, G.:
Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite Elem. Anal. Des. 40 (2003), 159-172 \MR 2014327.
DOI 10.1016/S0168-874X(02)00196-8 |
MR 2014327
[6] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990).
MR 1066462
[8] Meisters, G. H., Olech, C.:
Locally one-to-one mappings and a classical theorem on schlicht functions. Duke Math. J. 30 (1963), 63-80.
MR 0143921 |
Zbl 0112.37702
[9] Mitchell, A. R., Wait, R.:
The Finite Element Method in Partial Differential Equations. John Wiley & Sons London (1977).
MR 0483547 |
Zbl 0344.35001
[10] Strang, G., Fix, G. J.:
An Analysis of the Finite Element Method. Prentice Hall Englewood Cliffs (1973).
MR 0443377 |
Zbl 0356.65096
[11] Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H.:
The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements. Comput. Mech. 14 (1994), 189-199.
DOI 10.1007/BF00350284 |
MR 1279009 |
Zbl 0804.65103